Reset all


Content Types


AID systems



Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


Metadata standards

PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 52 result(s)
Swiss Institute of Bioinformatics (SIB) coordinates research and education in bioinformatics throughout Switzerland and provides bioinformatics services to the national and international research community. ExPASy gives access to numerous repositories and databases of SIB. For example: array map, MetaNetX, SWISS-MODEL and World-2DPAGE, and many others see a list here
The Open Archive for Miscellaneous Data (OMIX) database is a data repository developed and maintained by the National Genomics Data Center (NGDC). The database specializes in descriptions of biological studies, including genomic, proteomic, and metabolomic, as well as data that do not fit in the structured archives at other databases in NGDC. It can accept various types of studies described via a simple format and enables researchers to upload supplementary information and link to it from the publication.
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
This Animal Quantitative Trait Loci (QTL) database (Animal QTLdb) is designed to house all publicly available QTL and trait mapping data (i.e. trait and genome location association data; collectively called "QTL data" on this site) on livestock animal species for easily locating and making comparisons within and between species. New database tools are continuely added to align the QTL and association data to other types of genome information, such as annotated genes, RH / SNP markers, and human genome maps. Besides the QTL data from species listed below, the QTLdb is open to house QTL/association date from other animal species where feasible. Note that the JAS along with other journals, now require that new QTL/association data be entered into a QTL database as part of their publication requirements.
METLIN represents the largest MS/MS collection of data with the database generated at multiple collision energies and in positive and negative ionization modes. The data is generated on multiple instrument types including SCIEX, Agilent, Bruker and Waters QTOF mass spectrometers.
NCBI Datasets is a continually evolving platform designed to provide easy and intuitive access to NCBI’s sequence data and metadata. NCBI Datasets is part of the NIH Comparative Genomics Resource (CGR). CGR facilitates reliable comparative genomics analyses for all eukaryotic organisms through an NCBI Toolkit and community collaboration.
The Cancer Genome Atlas (TCGA) Data Portal provides a platform for researchers to search, download, and analyze data sets generated by TCGA. It contains clinical information, genomic characterization data, and high level sequence analysis of the tumor genomes. The Data Coordinating Center (DCC) is the central provider of TCGA data. The DCC standardizes data formats and validates submitted data.
The Brain Transcriptome Database (BrainTx) project aims to create an integrated platform to visualize and analyze our original transcriptome data and publicly accessible transcriptome data related to the genetics that underlie the development, function, and dysfunction stages and states of the brain.
!!! >>> the repository is offline >>> !!! GOBASE is a taxonomically broad organelle genome database that organizes and integrates diverse data related to mitochondria and chloroplasts. GOBASE is currently expanding to include information on representative bacteria that are thought to be specifically related to the bacterial ancestors of mitochondria and chloroplasts
eLMSG (eLibrary of Microbial Systematics and Genomics) is a web microbial library that integrates not only taxonomic information, but also genomic information and phenotypic information (including morphology, physiology, biochemistry and enzymology). The taxonomic system of eLMSG is manually curated and composed of all validly and some effectively published taxa. For each taxon, the Latin name, taxon ID (NCBI taxonomy), etymology, rank, lineage, the dates of effective and/or valid publication, feature descriptions, nomenclature type and references for the proposal and emendations during the history of the taxon are presented. Besides these data, the species taxa contain information about 16S rRNA gene and/or genome sequences. All publicly available genome data of each type species including both type and non-type strains were collected, and if needed, re-annotated using the standardized analysis pipeline. Furthermore, pan-genomic data analyses were conducted for species with ≥5 genome sequences available. Finally, for all type species, taxonomically relevant phenotypic data were extracted and curated from literatures, which were further indexed into eLMSG as searchable and analyzable data records. Taken together, eLMSG is a comprehensive web platform for studying mi- crobial systematics and genomics, potentially useful for better understanding microbial taxonomy, natural evolutionary processes and ecological relationships.
TriTrypDB is an integrated genomic and functional genomic database for pathogens of the family Trypanosomatidae, including organisms in both Leishmania and Trypanosoma genera. TriTrypDB and its continued development are possible through the collaborative efforts between EuPathDB, GeneDB and colleagues at the Seattle Biomedical Research Institute (SBRI).
BiGG is a knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest.
The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. The latest release of DrugBank (version 5.1.1, released 2018-07-03) contains 11,881 drug entries including 2,526 approved small molecule drugs, 1,184 approved biotech (protein/peptide) drugs, 129 nutraceuticals and over 5,751 experimental drugs. Additionally, 5,132 non-redundant protein (i.e. drug target/enzyme/transporter/carrier) sequences are linked to these drug entries. Each DrugCard entry contains more than 200 data fields with half of the information being devoted to drug/chemical data and the other half devoted to drug target or protein data.
Gemma is a database for the meta-analysis, re-use and sharing of genomics data, currently primarily targeted at the analysis of gene expression profiles. Gemma contains data from thousands of public studies, referencing thousands of published papers. Users can search, access and visualize co-expression and differential expression results.
The Maize Genetics and Genomics Database focuses on collecting data related to the crop plant and model organism Zea mays. The project's goals are to synthesize, display, and provide access to maize genomics and genetics data, prioritizing mutant and phenotype data and tools, structural and genetic map sets, and gene models. MaizeGDB also aims to make the Maize Newsletter available, and provide support services to the community of maize researchers. MaizeGDB is working with the Schnable lab, the Panzea project, The Genome Reference Consortium, and iPlant Collaborative to create a plan for archiving, dessiminating, visualizing, and analyzing diversity data. MMaizeGDB is short for Maize Genetics/Genomics Database. It is a USDA/ARS funded project to integrate the data found in MaizeDB and ZmDB into a single schema, develop an effective interface to access this data, and develop additional tools to make data analysis easier. Our goal in the long term is a true next-generation online maize database.aize genetics and genomics database.
This Web resource provides data and information relevant to SARS coronavirus. It includes links to the most recent sequence data and publications, to other SARS related resources, and a pre-computed alignment of genome sequences from various isolates. In order to provide free and easy access to genome and protein sequences and associated metadata from the SARS-CoV-2, we created a dedicated Severe acute respiratory syndrome coronavirus 2 data hub. You can access the Results Table on SARS-CoV-2 data hub, by pressing "RefSeq genomes", "nucleotide" or "protein" links on announcement banner located on NCBI home page, in "Find data" navigation menu or using "Up-to-date SARS-CoV-2" shortcut button in "Search by virus" form. SARS-CoV-2 sequences is part of NCBI Virus
ALSPAC is a longitudinal birth cohort study which enrolled pregnant women who were resident in one of three Bristol-based health districts in the former County of Avon with an expected delivery date between 1st April 1991 and 31st December 1992. Around 14,000 pregnant women were initially recruited. Detailed information has been collected on these women, their partners and subsequent children using self-completion questionnaires, data extraction from medical notes, linkage to routine information systems and from hands-on research clinics. Additional cohorts of participants have since been enrolled in their own right including fathers, siblings, children of the children and grandparents of the children. Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee (IRB00003312) and Local Research Ethics.
ASAP (a systematic annotation package for community analysis of genomes) is a relational database and web interface developed to store, update and distribute genome sequence data and gene expression data collected by or in collaboration with researchers at the University of Wisconsin - Madison. ASAP was designed to facilitate ongoing community annotation of genomes and to grow with genome projects as they move from the preliminary data stage through post-sequencing functional analysis. The ASAP database includes multiple genome sequences at various stages of analysis, and gene expression data from preliminary experiments.