Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 31 result(s)
The ENCODE Encyclopedia organizes the most salient analysis products into annotations, and provides tools to search and visualize them. The Encyclopedia has two levels of annotations: Integrative-level annotations integrate multiple types of experimental data and ground level annotations. Ground-level annotations are derived directly from the experimental data, typically produced by uniform processing pipelines.
The IMPC is a confederation of international mouse phenotyping projects working towards the agreed goals of the consortium: To undertake the phenotyping of 20,000 mouse mutants over a ten year period, providing the first functional annotation of a mammalian genome. Maintain and expand a world-wide consortium of institutions with capacity and expertise to produce germ line transmission of targeted knockout mutations in embryonic stem cells for 20,000 known and predicted mouse genes. Test each mutant mouse line through a broad based primary phenotyping pipeline in all the major adult organ systems and most areas of major human disease. Through this activity and employing data annotation tools, systematically aim to discover and ascribe biological function to each gene, driving new ideas and underpinning future research into biological systems; Maintain and expand collaborative “networks” with specialist phenotyping consortia or laboratories, providing standardized secondary level phenotyping that enriches the primary dataset, and end-user, project specific tertiary level phenotyping that adds value to the mammalian gene functional annotation and fosters hypothesis driven research; and Provide a centralized data centre and portal for free, unrestricted access to primary and secondary data by the scientific community, promoting sharing of data, genotype-phenotype annotation, standard operating protocols, and the development of open source data analysis tools. Members of the IMPC may include research centers, funding organizations and corporations.
The Museum is committed to open access and open science, and has launched the Data Portal to make its research and collections datasets available online. It allows anyone to explore, download and reuse the data for their own research. Our natural history collection is one of the most important in the world, documenting 4.5 billion years of life, the Earth and the solar system. Almost all animal, plant, mineral and fossil groups are represented. These datasets will increase exponentially. Under the Museum's ambitious digital collections programme we aim to have 20 million specimens digitised in the next five years.
Launched in 2000, WormBase is an international consortium of biologists and computer scientists dedicated to providing the research community with accurate, current, accessible information concerning the genetics, genomics and biology of C. elegans and some related nematodes. In addition to their curation work, all sites have ongoing programs in bioinformatics research to develop the next generations of WormBase structure, content and accessibility
MorphoSource is a data repository specialized for 3D representing physical objects used in research in education (e.g., from museum or laboratory collections). It allows researchers and museum collection staff to store and organize, share, and distribute their own 3d data. Furthermore any registered user can immediately search for and download 3d morphological data sets that have been made accessible through the consent of data authors.
DEIMS-SDR (Dynamic Ecological Information Management System - Site and dataset registry) is an information management system that allows you to discover long-term ecosystem research sites around the globe, along with the data gathered at those sites and the people and networks associated with them. DEIMS-SDR describes a wide range of sites, providing a wealth of information, including each site’s location, ecosystems, facilities, parameters measured and research themes. It is also possible to access a growing number of datasets and data products associated with the sites. All sites and dataset records can be referenced using unique identifiers that are generated by DEIMS-SDR. It is possible to search for sites via keyword, predefined filters or a map search. By including accurate, up to date information in DEIMS, site managers benefit from greater visibility for their LTER site, LTSER platform and datasets, which can help attract funding to support site investments. The aim of DEIMS-SDR is to be the globally most comprehensive catalogue of environmental research and monitoring facilities, featuring foremost but not exclusively information about all LTER sites on the globe and providing that information to science, politics and the public in general.
Gemma is a database for the meta-analysis, re-use and sharing of genomics data, currently primarily targeted at the analysis of gene expression profiles. Gemma contains data from thousands of public studies, referencing thousands of published papers. Users can search, access and visualize co-expression and differential expression results.
The Genomic Observatories Meta-Database (GEOME) is a web-based database that captures the who, what, where, and when of biological samples and associated genetic sequences. GEOME helps users with the following goals: ensure the metadata from your biological samples is findable, accessible, interoperable, and reusable; improve the quality of your data and comply with global data standards; and integrate with R, ease publication to NCBI's sequence read archive, and work with an associated LIMS. The initial use case for GEOME came from the Diversity of the Indo-Pacific Network (DIPnet) resource.
The Centre for the Environment, Fisheries and Aquaculture Science (Cefas), as one of the world's longest-established marine research organisations, has provided advice on the sustainable exploitation of marine resources since 1902. Today Cefas works in support of a healthy environment and a growing blue economy providing innovative solutions for the aquatic environment, biodiversity and food security. The Cefas Data Hub provides access to over 2080 metadata records, with over 5500 data sets available to download and connect to in support of commitments to Open Science through the Data Portal. Datasets available are increasingly diverse and include many legacy datasets including those from fish, shellfish and plankton surveys from the 1980's to the present day. Other increasingly international datasets made available include species migration data from tagging activities and data on habitat and sediment, ecosystem change, human activities including marine litter, otolith sampling and fish stomach contents, oceanography, acoustics, health and water quality. Data is provided under Open Government License by default where feasible.
ArrayExpress is one of the major international repositories for high-throughput functional genomics data from both microarray and high-throughput sequencing studies, many of which are supported by peer-reviewed publications. Data sets are submitted directly to ArrayExpress and curated by a team of specialist biological curators. In the past (until 2018) datasets from the NCBI Gene Expression Omnibus database were imported on a weekly basis. Data is collected to MIAME and MINSEQE standards.
EMAGE (e-Mouse Atlas of Gene Expression) is an online biological database of gene expression data in the developing mouse (Mus musculus) embryo. The data held in EMAGE is spatially annotated to a framework of 3D mouse embryo models produced by EMAP (e-Mouse Atlas Project). These spatial annotations allow users to query EMAGE by spatial pattern as well as by gene name, anatomy term or Gene Ontology (GO) term. EMAGE is a freely available web-based resource funded by the Medical Research Council (UK) and based at the MRC Human Genetics Unit in the Institute of Genetics and Molecular Medicine, Edinburgh, UK.
Country
The project brings together national key players providing environmentally related biological data and services to develop the ‘German Federation for Biological Data' (GFBio). The overall goal is to provide a sustainable, service oriented, national data infrastructure facilitating data sharing and stimulating data intensive science in the fields of biological and environmental research.
<<<!!!<<< The ArkDB is now CLOSED With apologies to anyone who still relies on the ArkDB data system or map-drawing tools, we've had to take the difficult decision to shut down the ArkDB system. We've not been funded to maintain it for many years now and have kept it in the air as best we could with the time that we had available but recent changes in personnel and continuing updates to the underpinning libraries mean that the effort required to keep it going outweighs the perceived benefits. If you feel that this is the wrong decision, please contact us to let us know and we'll see what we can do together You can always contact us on our Roslin Bioinformatics email address (roslin.bioinformatics@roslin.ed.ac.uk) The Roslin Bioinformatics Team 21st November 2018 >>>!!!>>>
The MMRRC is the nation’s premier national public repository system for mutant mice. Funded by the NIH continuously since 1999, the MMRRC archives and distributes scientifically valuable spontaneous and induced mutant mouse strains and ES cell lines for use by the biomedical research community. The MMRRC consists of a national network of breeding and distribution repositories and an Informatics Coordination and Service Center located at 4 major academic centers across the nation. The MMRRC is committed to upholding the highest standards of experimental design and quality control to optimize the reproducibility of research studies using mutant mice.
PDBe is the European resource for the collection, organisation and dissemination of data on biological macromolecular structures. In collaboration with the other worldwide Protein Data Bank (wwPDB) partners - the Research Collaboratory for Structural Bioinformatics (RCSB) and BioMagResBank (BMRB) in the USA and the Protein Data Bank of Japan (PDBj) - we work to collate, maintain and provide access to the global repository of macromolecular structure data. We develop tools, services and resources to make structure-related data more accessible to the biomedical community.
EuPathDB (formerly ApiDB) is an integrated database covering the eukaryotic pathogens in the genera Acanthamoeba, Annacaliia, Babesia, Crithidia, Cryptosporidium, Edhazardia, Eimeria, Encephalitozoon, Endotrypanum, Entamoeba, Enterocytozoon, Giardia, Gregarina, Hamiltosporidium, Leishmania, Nematocida, Neospora, Nosema, Plasmodium, Theileria, Toxoplasma, Trichomonas, Trypanosoma and Vavraia, Vittaforma). While each of these groups is supported by a taxon-specific database built upon the same infrastructure, the EuPathDB portal offers an entry point to all of these resources, and the opportunity to leverage orthology for searches across genera.
The Barcode of Life Data Systems (BOLD) provides DNA barcode data. BOLD's online workbench supports data validation, annotation, and publication for specimen, distributional, and molecular data. The platform consists of four main modules: a data portal, a database of barcode clusters, an educational portal, and a data collection workbench. BOLD is the go-to site for DNA-based identification. As the central informatics platform for DNA barcoding, BOLD plays a crucial role in assimilating and organizing data gathered by the international barcode research community. Two iBOL (International Barcode of Life) Working Groups are supporting the ongoing development of BOLD.
The World Register of Marine Species (WoRMS) integrates approximately 100 marine datbases to provide an authoritative and comprehensive list of marine organisms. WoRMS has an editorial system where taxonomic groups are managed by experts responsible for the quality of the information. WorMS register of marine species emerged from the European Register of Marine Species (ERMS) and the Flanders Marine Institute (VLIZ). WoRMS is a contribution to Lifewatch, Catalogue of Life, Encyclopedia of Life, Global Biodiversity Information Facility and the Census of Marine Life.
GeneLab is an interactive, open-access resource where scientists can upload, download, store, search, share, transfer, and analyze omics data from spaceflight and corresponding analogue experiments. Users can explore GeneLab datasets in the Data Repository, analyze data using the Analysis Platform, and create collaborative projects using the Collaborative Workspace. GeneLab promises to facilitate and improve information sharing, foster innovation, and increase the pace of scientific discovery from extremely rare and valuable space biology experiments. Discoveries made using GeneLab have begun and will continue to deepen our understanding of biology, advance the field of genomics, and help to discover cures for diseases, create better diagnostic tools, and ultimately allow astronauts to better withstand the rigors of long-duration spaceflight. GeneLab helps scientists understand how the fundamental building blocks of life itself – DNA, RNA, proteins, and metabolites – change from exposure to microgravity, radiation, and other aspects of the space environment. GeneLab does so by providing fully coordinated epigenomics, genomics, transcriptomics, proteomics, and metabolomics data alongside essential metadata describing each spaceflight and space-relevant experiment. By carefully curating and implementing best practices for data standards, users can combine individual GeneLab datasets to gain new, comprehensive insights about the effects of spaceflight on biology. In this way, GeneLab extends the scientific knowledge gained from each biological experiment conducted in space, allowing scientists from around the world to make novel discoveries and develop new hypotheses from these priceless data.