Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 113 result(s)
Online Mendelian Inheritance in Animals (OMIA) is a catalogue/compendium of inherited disorders, other (single-locus) traits, and genes in 218 animal species (other than human and mouse and rats, which have their own resources) authored by Professor Frank Nicholas of the University of Sydney, Australia, with help from many people over the years. OMIA information is stored in a database that contains textual information and references, as well as links to relevant PubMed and Gene records at the NCBI, and to OMIM and Ensembl.
Pubchem contains 3 databases. 1. PubChem BioAssay: The PubChem BioAssay Database contains bioactivity screens of chemical substances described in PubChem Substance. It provides searchable descriptions of each bioassay, including descriptions of the conditions and readouts specific to that screening procedure. 2. PubChem Compound: The PubChem Compound Database contains validated chemical depiction information provided to describe substances in PubChem Substance. Structures stored within PubChem Compounds are pre-clustered and cross-referenced by identity and similarity groups. 3. PubChem Substance. The PubChem Substance Database contains descriptions of samples, from a variety of sources, and links to biological screening results that are available in PubChem BioAssay. If the chemical contents of a sample are known, the description includes links to PubChem Compound.
The tree of life links all biodiversity through a shared evolutionary history. This project will produce the first online, comprehensive first-draft tree of all 1.8 million named species, accessible to both the public and scientific communities. Assembly of the tree will incorporate previously-published results, with strong collaborations between computational and empirical biologists to develop, test and improve methods of data synthesis. This initial tree of life will not be static; instead, we will develop tools for scientists to update and revise the tree as new data come in. Early release of the tree and tools will motivate data sharing and facilitate ongoing synthesis of knowledge.
Academic Commons provides open, persistent access to the scholarship produced by researchers at Columbia University, Barnard College, Jewish Theological Seminary, Teachers College, and Union Theological Seminary. Academic Commons is a program of the Columbia University Libraries. Academic Commons accepts articles, dissertations, research data, presentations, working papers, videos, and more.
OMIM is a comprehensive, authoritative compendium of human genes and genetic phenotypes that is freely available and updated daily. OMIM is authored and edited at the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, under the direction of Dr. Ada Hamosh. Its official home is omim.org.
dbEST is a division of GenBank that contains sequence data and other information on "single-pass" cDNA sequences, or "Expressed Sequence Tags", from a number of organisms. Expressed Sequence Tags (ESTs) are short (usually about 300-500 bp), single-pass sequence reads from mRNA (cDNA). Typically they are produced in large batches. They represent a snapshot of genes expressed in a given tissue and/or at a given developmental stage. They are tags (some coding, others not) of expression for a given cDNA library. Most EST projects develop large numbers of sequences. These are commonly submitted to GenBank and dbEST as batches of dozens to thousands of entries, with a great deal of redundancy in the citation, submitter and library information. To improve the efficiency of the submission process for this type of data, we have designed a special streamlined submission process and data format. dbEST also includes sequences that are longer than the traditional ESTs, or are produced as single sequences or in small batches. Among these sequences are products of differential display experiments and RACE experiments. The thing that these sequences have in common with traditional ESTs, regardless of length, quality, or quantity, is that there is little information that can be annotated in the record. If a sequence is later characterized and annotated with biological features such as a coding region, 5'UTR, or 3'UTR, it should be submitted through the regular GenBank submissions procedure (via BankIt or Sequin), even if part of the sequence is already in dbEST. dbEST is reserved for single-pass reads. Assembled sequences should not be submitted to dbEST. GenBank will accept assembled EST submissions for the forthcoming TSA (Transcriptome Shotgun Assembly) division. The individual reads which make up the assembly should be submitted to dbEST, the Trace archive or the Short Read Archive (SRA) prior to the submission of the assemblies.
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
OrthoMCL is a genome-scale algorithm for grouping orthologous protein sequences. It provides not only groups shared by two or more species/genomes, but also groups representing species-specific gene expansion families. So it serves as an important utility for automated eukaryotic genome annotation. OrthoMCL starts with reciprocal best hits within each genome as potential in-paralog/recent paralog pairs and reciprocal best hits across any two genomes as potential ortholog pairs. Related proteins are interlinked in a similarity graph. Then MCL (Markov Clustering algorithm,Van Dongen 2000; www.micans.org/mcl) is invoked to split mega-clusters. This process is analogous to the manual review in COG construction. MCL clustering is based on weights between each pair of proteins, so to correct for differences in evolutionary distance the weights are normalized before running MCL.
This Animal Quantitative Trait Loci (QTL) database (Animal QTLdb) is designed to house all publicly available QTL and trait mapping data (i.e. trait and genome location association data; collectively called "QTL data" on this site) on livestock animal species for easily locating and making comparisons within and between species. New database tools are continuely added to align the QTL and association data to other types of genome information, such as annotated genes, RH / SNP markers, and human genome maps. Besides the QTL data from species listed below, the QTLdb is open to house QTL/association date from other animal species where feasible. Note that the JAS along with other journals, now require that new QTL/association data be entered into a QTL database as part of their publication requirements.
The Plant Metabolic Network (PMN) provides a broad network of plant metabolic pathway databases that contain curated information from the literature and computational analyses about the genes, enzymes, compounds, reactions, and pathways involved in primary and secondary metabolism in plants. The PMN currently houses one multi-species reference database called PlantCyc and 22 species/taxon-specific databases.
FungiDB belongs to the EuPathDB family of databases and is an integrated genomic and functional genomic database for the kingdom Fungi. FungiDB was first released in early 2011 as a collaborative project between EuPathDB and the group of Jason Stajich (University of California, Riverside). At the end of 2015, FungiDB was integrated into the EuPathDB bioinformatic resource center. FungiDB integrates whole genome sequence and annotation and also includes experimental and environmental isolate sequence data. The database includes comparative genomics, analysis of gene expression, and supplemental bioinformatics analyses and a web interface for data-mining.
METLIN represents the largest MS/MS collection of data with the database generated at multiple collision energies and in positive and negative ionization modes. The data is generated on multiple instrument types including SCIEX, Agilent, Bruker and Waters QTOF mass spectrometers.
Data deposit is supported for University of Ottawa faculty, students, and affiliated researchers. The repository is multidisciplinary and hosted on Canadian servers. It includes features such as permanent links (DOIs) which encourage citation of your dataset and help you set terms for access and reuse of your data. uOttawa Dataverse is currently optimal for small to medium datasets.
The IMSR is a searchable online database of mouse strains, stocks, and mutant ES cell lines available worldwide, including inbred, mutant, and genetically engineered strains. The goal of the IMSR is to assist the international scientific community in locating and obtaining mouse resources for research. Note that the data content found in the IMSR is as supplied by strain repository holders. For each strain or cell line listed in the IMSR, users can obtain information about: Where that resource is available (Repository Site); What state(s) the resource is available as (e.g. live, cryopreserved embryo or germplasm, ES cells); Links to descriptive information about a strain or ES cell line; Links to mutant alleles carried by a strain or ES cell line; Links for ordering a strain or ES cell line from a Repository; Links for contacting the Repository to send a query
Reactome is a manually curated, peer-reviewed pathway database, annotated by expert biologists and cross-referenced to bioinformatics databases. Its aim is to share information in the visual representations of biological pathways in a computationally accessible format. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. These include NCBI Gene, Ensembl and UniProt databases, the UCSC and HapMap Genome Browsers, the KEGG Compound and ChEBI small molecule databases, PubMed, and Gene Ontology.
The Allen Brain Atlas provides a unique online public resource integrating extensive gene expression data, connectivity data and neuroanatomical information with powerful search and viewing tools for the adult and developing brain in mouse, human and non-human primate
As with most biomedical databases, the first step is to identify relevant data from the research community. The Monarch Initiative is focused primarily on phenotype-related resources. We bring in data associated with those phenotypes so that our users can begin to make connections among other biological entities of interest. We import data from a variety of data sources. With many resources integrated into a single database, we can join across the various data sources to produce integrated views. We have started with the big players including ClinVar and OMIM, but are equally interested in boutique databases. You can learn more about the sources of data that populate our system from our data sources page https://monarchinitiative.org/about/sources.
<<<!!!<<< This repository is no longer available. >>>!!!>>> NetPath is currently one of the largest open-source repository of human signaling pathways that is all set to become a community standard to meet the challenges in functional genomics and systems biology. Signaling networks are the key to deciphering many of the complex networks that govern the machinery inside the cell. Several signaling molecules play an important role in disease processes that are a direct result of their altered functioning and are now recognized as potential therapeutic targets. Understanding how to restore the proper functioning of these pathways that have become deregulated in disease, is needed for accelerating biomedical research. This resource is aimed at demystifying the biological pathways and highlights the key relationships and connections between them. Apart from this, pathways provide a way of reducing the dimensionality of high throughput data, by grouping thousands of genes, proteins and metabolites at functional level into just several hundreds of pathways for an experiment. Identifying the active pathways that differ between two conditions can have more explanatory power than just a simple list of differentially expressed genes and proteins.
Our knowledge of the many life-forms on Earth - of animals, plants, fungi, protists and bacteria - is scattered around the world in books, journals, databases, websites, specimen collections, and in the minds of people everywhere. Imagine what it would mean if this information could be gathered together and made available to everyone – anywhere – at a moment’s notice. This dream is becoming a reality through the Encyclopedia of Life.
The Tree of Life Web Project is a collection of information about biodiversity compiled collaboratively by hundreds of expert and amateur contributors. Its goal is to contain a page with pictures, text, and other information for every species and for each group of organisms, living or extinct. Connections between Tree of Life web pages follow phylogenetic branching patterns between groups of organisms, so visitors can browse the hierarchy of life and learn about phylogeny and evolution as well as the characteristics of individual groups.
Human Proteinpedia is a community portal for sharing and integration of human protein data. This is a joint project between Pandey at Johns Hopkins University, and Institute of Bioinformatics, Bangalore. This portal allows research laboratories around the world to contribute and maintain protein annotations. Human Protein Reference Database (HPRD) integrates data, that is deposited in Human Proteinpedia along with the existing literature curated information in the context of an individual protein. All the public data contributed to Human Proteinpedia can be queried, viewed and downloaded. Data pertaining to post-translational modifications, protein interactions, tissue expression, expression in cell lines, subcellular localization and enzyme substrate relationships may be deposited.