Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 155 result(s)
The Macaulay Library is the world's largest and oldest scientific archive of biodiversity audio and video recordings. The library collects and preserves recordings of each species' behavior and natural history, to facilitate the ability of others to collect and preserve such recordings, and to actively promote the use of these recordings for diverse purposes spanning scientific research, education, conservation, and the arts. All archived analog recordings in the collection, going back to 1929.
VertNet is a NSF-funded collaborative project that makes biodiversity data free and available on the web. VertNet is a tool designed to help people discover, capture, and publish biodiversity data. It is also the core of a collaboration between hundreds of biocollections that contribute biodiversity data and work together to improve it. VertNet is an engine for training current and future professionals to use and build upon best practices in data quality, curation, research, and data publishing. Yet, VertNet is still the aggregate of all of the information that it mobilizes. To us, VertNet is all of these things and more.
The Protein Data Bank (PDB) archive is the single worldwide repository of information about the 3D structures of large biological molecules, including proteins and nucleic acids. These are the molecules of life that are found in all organisms including bacteria, yeast, plants, flies, other animals, and humans. Understanding the shape of a molecule helps to understand how it works. This knowledge can be used to help deduce a structure's role in human health and disease, and in drug development. The structures in the archive range from tiny proteins and bits of DNA to complex molecular machines like the ribosome.
The Maize Genetics and Genomics Database focuses on collecting data related to the crop plant and model organism Zea mays. The project's goals are to synthesize, display, and provide access to maize genomics and genetics data, prioritizing mutant and phenotype data and tools, structural and genetic map sets, and gene models. MaizeGDB also aims to make the Maize Newsletter available, and provide support services to the community of maize researchers. MaizeGDB is working with the Schnable lab, the Panzea project, The Genome Reference Consortium, and iPlant Collaborative to create a plan for archiving, dessiminating, visualizing, and analyzing diversity data. MMaizeGDB is short for Maize Genetics/Genomics Database. It is a USDA/ARS funded project to integrate the data found in MaizeDB and ZmDB into a single schema, develop an effective interface to access this data, and develop additional tools to make data analysis easier. Our goal in the long term is a true next-generation online maize database.aize genetics and genomics database.
Country
SILVA is a comprehensive, quality-controlled web resource for up-to-date aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains alongside supplementary online services. In addition to data products, SILVA provides various online tools such as alignment and classification, phylogenetic tree calculation and viewer, probe/primer matching, and an amplicon analysis pipeline. With every full release a curated guide tree is provided that contains the latest taxonomy and nomenclature based on multiple references. SILVA is an ELIXIR Core Data Resource.
This project is an open invitation to anyone and everyone to participate in a decentralized effort to explore the opportunities of open science in neuroimaging. We aim to document how much (scientific) value can be generated from a data release — from the publication of scientific findings derived from this dataset, algorithms and methods evaluated on this dataset, and/or extensions of this dataset by acquisition and incorporation of new data. The project involves the processing of acoustic stimuli. In this study, the scientists have demonstrated an audiodescription of classic "Forrest Gump" to subjects, while researchers using functional magnetic resonance imaging (fMRI) have captured the brain activity of test candidates in the processing of language, music, emotions, memories and pictorial representations.In collaboration with various labs in Magdeburg we acquired and published what is probably the most comprehensive sample of brain activation patterns of natural language processing. Volunteers listened to a two-hour audio movie version of the Hollywood feature film "Forrest Gump" in a 7T MRI scanner. High-resolution brain activation patterns and physiological measurements were recorded continuously. These data have been placed into the public domain, and are freely available to the scientific community and the general public.
STOREDB is a platform for the archiving and sharing of primary data and outputs of all kinds, including epidemiological and experimental data, from research on the effects of radiation. It also provides a directory of bioresources and databases containing information and materials that investigators are willing to share. STORE supports the creation of a radiation research commons.
Brainlife promotes engagement and education in reproducible neuroscience. We do this by providing an online platform where users can publish code (Apps), Data, and make it "alive" by integragrate various HPC and cloud computing resources to run those Apps. Brainlife also provide mechanisms to publish all research assets associated with a scientific project (data and analyses) embedded in a cloud computing environment and referenced by a single digital-object-identifier (DOI). The platform is unique because of its focus on supporting scientific reproducibility beyond open code and open data, by providing fundamental smart mechanisms for what we refer to as “Open Services.”
Tropicos® was originally created for internal research but has since been made available to the world’s scientific community. All of the nomenclatural, bibliographic, and specimen data accumulated in MBG’s electronic databases during the past 30 years are publicly available here.
iNaturalist is a citizen science project and online social network of naturalists, citizen scientists, and biologists built on the concept of mapping and sharing observations of biodiversity across the globe. iNat is a platform for biodiversity research, where anyone can start up their own science project with a specific purpose and collaborate with other observers.
The Bremen Core Repository - BCR, for International Ocean Discovery Program (IODP), Integrated Ocean Discovery Program (IODP), Ocean Drilling Program (ODP), and Deep Sea Drilling Project (DSDP) cores from the Atlantic Ocean, Mediterranean and Black Seas and Arctic Ocean is operated at University of Bremen within the framework of the German participation in IODP. It is one of three IODP repositories (beside Gulf Coast Repository (GCR) in College Station, TX, and Kochi Core Center (KCC), Japan). One of the scientific goals of IODP is to research the deep biosphere and the subseafloor ocean. IODP has deep-frozen microbiological samples from the subseafloor available for interested researchers and will continue to collect and preserve geomicrobiology samples for future research.
Project Achilles is a systematic effort aimed at identifying and cataloging genetic vulnerabilities across hundreds of genomically characterized cancer cell lines. The project uses genome-wide genetic perturbation reagents (shRNAs or Cas9/sgRNAs) to silence or knock-out individual genes and identify those genes that affect cell survival. Large-scale functional screening of cancer cell lines provides a complementary approach to those studies that aim to characterize the molecular alterations (e.g. mutations, copy number alterations) of primary tumors, such as The Cancer Genome Atlas (TCGA). The overall goal of the project is to identify cancer genetic dependencies and link them to molecular characteristics in order to prioritize targets for therapeutic development and identify the patient population that might benefit from such targets. Project Achilles data is hosted on the Cancer Dependency Map Portal (DepMap) where it has been harmonized with our genomics and cellular models data. You can access the latest and all past datasets here: https://depmap.org/portal/download/all/
Country
The goals of FMGP are to: (i) sequence complete mitochondrial genomes from all major fungal lineages, (ii) infer a robust fungal phylogeny, (iii) define the origin of the fungi, their protistan ancestors, and their specific phylogenetic link to the animals, (iv) investigate mitochondrial gene expression, introns, RNAse P RNA structures, mobile elements.
Virtual Fly Brain (VFB) - an interactive tool for neurobiologists to explore the detailed neuroanatomy, neuron connectivity and gene expression of the Drosophila melanogaster CNS.
The UniPROBE (Universal PBM Resource for Oligonucleotide Binding Evaluation) database hosts data generated by universal protein binding microarray (PBM) technology on the in vitro DNA binding specificities of proteins. This initial release of the UniPROBE database provides a centralized resource for accessing comprehensive data on the preferences of proteins for all possible sequence variants ('words') of length k ('k-mers'), as well as position weight matrix (PWM) and graphical sequence logo representations of the k-mer data. In total, the database currently hosts DNA binding data for 406 nonredundant proteins from a diverse collection of organisms, including the prokaryote Vibrio harveyi, the eukaryotic malarial parasite Plasmodium falciparum, the parasitic Apicomplexan Cryptosporidium parvum, the yeast Saccharomyces cerevisiae, the worm Caenorhabditis elegans, mouse, and human. The database's web tools (on the right) include a text-based search, a function for assessing motif similarity between user-entered data and database PWMs, and a function for locating putative binding sites along user-entered nucleotide sequences
The Fungal Genetics Stock Center has preserved and distributed strains of genetically characterized fungi since 1960. The collection includes over 20,000 accessioned strains of classical and genetically engineered mutants of key model, human, and plant pathogenic fungi. These materials are distributed as living stocks to researchers around the world.
>>>>!!!!<<<< The Cancer Genomics Hub mission is now completed. The Cancer Genomics Hub was established in August 2011 to provide a repository to The Cancer Genome Atlas, the childhood cancer initiative Therapeutically Applicable Research to Generate Effective Treatments and the Cancer Genome Characterization Initiative. CGHub rapidly grew to be the largest database of cancer genomes in the world, storing more than 2.5 petabytes of data and serving downloads of nearly 3 petabytes per month. As the central repository for the foundational genome files, CGHub streamlined team science efforts as data became as easy to obtain as downloading from a hard drive. The convenient access to Big Data, and the collaborations that CGHub made possible, are now essential to cancer research. That work continues at the NCI's Genomic Data Commons. All files previously stored at CGHub can be found there. The Website for the Genomic Data Commons is here: https://gdc.nci.nih.gov/ >>>>!!!!<<<< The Cancer Genomics Hub (CGHub) is a secure repository for storing, cataloging, and accessing cancer genome sequences, alignments, and mutation information from the Cancer Genome Atlas (TCGA) consortium and related projects. Access to CGHub Data: All researchers using CGHub must meet the access and use criteria established by the National Institutes of Health (NIH) to ensure the privacy, security, and integrity of participant data. CGHub also hosts some publicly available data, in particular data from the Cancer Cell Line Encyclopedia. All metadata is publicly available and the catalog of metadata and associated BAMs can be explored using the CGHub Data Browser.
The Paleobiology Database (PaleoBioDB) is a non-governmental, non-profit public resource for paleontological data. It has been organized and operated by a multi-disciplinary, multi-institutional, international group of paleobiological researchers. Its purpose is to provide global, collection-based occurrence and taxonomic data for organisms of all geological ages, as well data services to allow easy access to data for independent development of analytical tools, visualization software, and applications of all types. The Database’s broader goal is to encourage and enable data-driven collaborative efforts that address large-scale paleobiological questions.
In early 2010 we updated the site to facilitate more rapid transfer of our data to the public database and focus our efforts on the core mission of providing expression pattern images to the research community. The original database https://www.fruitfly.org/index.html reproduced functions available on FlyBase, complicating our updates by the requirement to re-synchronize with FlyBase updates. Our expression reports on the new site still link to FlyBase gene reports, but we no longer reproduce FlyBase functions and therefore can update expression data on an ongoing basis instead of more infrequent major releases. All the functions relating to the expression patterns remain and we soon will add an option to search expression patterns by image similarity, in addition to annotation term searches. In a transitional phase we will leave both the old and the new sites up, but the newer data (post Release 2) will appear only on the new website. We welcome any feedback or requests for additional features. - The goals of the Drosophila Genome Center are to finish the sequence of the euchromatic genome of Drosophila melanogaster to high quality and to generate and maintain biological annotations of this sequence. In addition to genomic sequencing, the BDGP is 1) producing gene disruptions using P element-mediated mutagenesis on a scale unprecedented in metazoans; 2) characterizing the sequence and expression of cDNAs; and 3) developing informatics tools that support the experimental process, identify features of DNA sequence, and allow us to present up-to-date information about the annotated sequence to the research community.
The Avian Knowledge Network (AKN) is an international network of governmental and non-governmental institutions and individuals linking avian conservation, monitoring and science through efficient data management and coordinated development of useful solutions using best-science practices based on the data.
OpenWorm aims to build the first comprehensive computational model of the Caenorhabditis elegans (C. elegans), a microscopic roundworm. With only a thousand cells, it solves basic problems such as feeding, mate-finding and predator avoidance. Despite being extremely well studied in biology, this organism still eludes a deep, principled understanding of its biology. We are using a bottom-up approach, aimed at observing the worm behaviour emerge from a simulation of data derived from scientific experiments carried out over the past decade. To do so we are incorporating the data available in the scientific community into software models. We are engineering Geppetto and Sibernetic, open-source simulation platforms, to be able to run these different models in concert. We are also forging new collaborations with universities and research institutes to collect data that fill in the gaps All the code we produce in the OpenWorm project is Open Source and available on GitHub.
The goal of the NeuroElectro Project is to extract information about the electrophysiological properties (e.g. resting membrane potentials and membrane time constants) of diverse neuron types from the existing literature and place it into a centralized database.
The GenitoUrinary Development Molecular Anatomy Project (GUDMAP) is a consortium of laboratories working to provide the scientific and medical community with tools to facilitate research. The key components are: (1) a molecular atlas of gene expression for the developing organs of the GenitoUrinary (GU) tract; (2) a high resolution molecular anatomy that highlights development of the GU system; (3) mouse strains to facilitate developmental and functional studies within the GU system; (4) tutorials describing GU organogenesis; and (5) rapid access to primary data via the GUDMAP database.