Content Types


AID systems



Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


Metadata standards

PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 103 result(s)
!!! Starting September 2013, MINT uses the IntAct database infrastructure to limit the duplication of efforts and to optimise future software development. Data manually curated by the MINT curators can now be accessed from the IntAct homepage at the EBI. Data maintenance and release, MINT PSICQUIC and IMEx services are under the responsibility of the IntAct team, while curation effort will be carried by both groups. The MINT development team now focuses on two new developments: mentha that integrates protein interaction information curated by IMEx databases and SIGNOR a database of logic relationships between human proteins. !!! MINT is a public repository for molecular interactions reported in peer-reviewed journals.IT is a collection of molecular interaction databases that can be used to search for, analyze and graphically display molecular interaction networks and pathways from a wide variety of species. MINT is comprised of separate database components. HomoMINT, is an inferred human protein interatction database. Domino, is database of domain peptide interactions. A new component has been added called VirusMINT that explores the interactions of viral proteins with human proteins.
The CyberCell database (CCDB) is a comprehensive collection of detailed enzymatic, biological, chemical, genetic, and molecular biological data about E. coli (strain K12, MG1655). It is intended to provide sufficient information and querying capacity for biologists and computer scientists to use computers or detailed mathematical models to simulate all or part of a bacterial cell at a nanoscopic (10-9 m), mesoscopic (10-8 m).The CyberCell database CCDB actually consists of 4 browsable databases: 1) the main CyberCell database (CCDB - containing gene and protein information), 2) the 3D structure database (CC3D – containing information for structural proteomics), 3) the RNA database (CCRD – containing tRNA and rRNA information), and 4) the metabolite database (CCMD – containing metabolite information). Each of these databases is accessible through hyperlinked buttons located at the top of the CCDB homepage. All CCDB sub-databases are fully web enabled, permitting a wide variety of interactive browsing, search and display operations. and microscopic (10-6 m) level.
APID Interactomes is a database that provides a comprehensive collection of protein interactomes for more than 400 organisms based in the integration of known experimentally validated protein-protein physical interactions (PPIs). Construction of the interactomes is done with a methodological approach to report quality levels and coverage over the proteomes for each organism included. In this way, APID provides interactomes from specific organisms that in 25 cases have more than 500 proteins. As a whole APID includes a comprehensive compendium of 90,379 distinct proteins and 678,441 singular interactions. The analytical and integrative effort done in APID unifies PPIs from primary databases of molecular interactions (BIND, BioGRID, DIP, HPRD, IntAct, MINT) and also from experimentally resolved 3D structures (PDB) where more than two distinct proteins have been identified. In this way, 8,388 structures have been analyzed to find specific protein-protein interactions reported with details of their molecular interfaces. APID also includes a new data visualization web-tool that allows the construction of sub-interactomes using query lists of proteins of interest and the visual exploration of the corresponding networks, including an interactive selection of the properties of the interactions (i.e. the reliability of the "edges" in the network) and an interactive mapping of the functional environment of the proteins (i.e. the functional annotations of the "nodes" in the network).
The compendium of crop Proteins with Annotate Locations (cropPAL) is a comprehensive collection of subcellular location annotation for proteins of hordeum vulgare (barley), tritium aestivum (wheat), oryza sativa (rice) and zea mays (corn) derived from published experimental localization studies and precompiled bioinformatic predictions.
The goal of the Autophagy Database is to provide up-to-date relevant information including protein structure data to researchers of autophagy, and to disseminate important findings to a wider audience so that their ramifications can be appreciated. For this purpose, we strive to make the database to contain as much pertinent information as possible and to make the contents freely available in a user-friendly format.
A human interactome map. The sequencing of the human genome has provided a surprisingly small number of genes, indicating that the complex organization of life is not reflected in the gene number but, rather, in the gene products – that is, in the proteins. These macromolecules regulate the vast majority of cellular processes by their ability to communicate with each other and to assemble into larger functional units. Therefore, the systematic analysis of protein-protein interactions is fundamental for the understanding of protein function, cellular processes and, ultimately, the complexity of life. Moreover, interactome maps are particularly needed to link new proteins to disease pathways and the identification of novel drug targets.
The Structure database provides three-dimensional structures of macromolecules for a variety of research purposes and allows the user to retrieve structures for specific molecule types as well as structures for genes and proteins of interest. Three main databases comprise Structure-The Molecular Modeling Database; Conserved Domains and Protein Classification; and the BioSystems Database. Structure also links to the PubChem databases to connect biological activity data to the macromolecular structures. Users can locate structural templates for proteins and interactively view structures and sequence data to closely examine sequence-structure relationships.
This Web resource provides data and information relevant to SARS coronavirus. It includes links to the most recent sequence data and publications, to other SARS related resources, and a pre-computed alignment of genome sequences from various isolates. The genome of SARS-CoV consists of a single, positive-strand RNA that is approximately 29,700 nucleotides long. The overall genome organization of SARS-CoV is similar to that of other coronaviruses. The reference genome includes 13 genes, which encode at least 14 proteins. Two large overlapping reading frames (ORFs) encompass 71% of the genome. The remainder has 12 potential ORFs, including genes for structural proteins S (spike), E (small envelope), M (membrane), and N (nucleocapsid). Other potential ORFs code for unique putative SARS-CoV-specific polypeptides that lack obvious sequence similarity to known proteins.
The Reference Sequence (RefSeq) collection provides a comprehensive, integrated, non-redundant, well-annotated set of sequences, including genomic DNA, transcripts, and proteins. RefSeq sequences form a foundation for medical, functional, and diversity studies. They provide a stable reference for genome annotation, gene identification and characterization, mutation and polymorphism analysis (especially RefSeqGene records), expression studies, and comparative analyses.
IMGT/mAb-DB provides a unique expertised resource on monoclonal antibodies (mAbs) with diagnostic or therapeutic indications, fusion proteins for immune applications (FPIA), composite proteins for clinical applications (CPCA) and relative proteins of the immune system (RPI) with clinical indications.
The Database of Protein Disorder (DisProt) is a curated database that provides information about proteins that lack fixed 3D structure in their putatively native states, either in their entirety or in part. DisProt is a community resource annotating protein sequences for intrinsically disorder regions from the literature. It classifies intrinsic disorder based on experimental methods and three ontologies for molecular function, transition and binding partner.
MatrixDB is a freely available database focused on interactions established by extracellular proteins and polysaccharides. MatrixDB takes into account the multimetric nature of the extracellular proteins (e.g. collagens, laminins and thrombospondins are multimers). MatrixDB includes interaction data extracted from the literature by manual curation in our lab, and offers access to relevant data involving extracellular proteins provided by our IMEx partner databases through the PSICQUIC webservice, as well as data from the Human Protein Reference Database. MatrixDB is in charge of the curation of papers published in Matrix Biology since January 2009
The UniPROBE (Universal PBM Resource for Oligonucleotide Binding Evaluation) database hosts data generated by universal protein binding microarray (PBM) technology on the in vitro DNA binding specificities of proteins. This initial release of the UniPROBE database provides a centralized resource for accessing comprehensive data on the preferences of proteins for all possible sequence variants ('words') of length k ('k-mers'), as well as position weight matrix (PWM) and graphical sequence logo representations of the k-mer data. In total, the database currently hosts DNA binding data for 406 nonredundant proteins from a diverse collection of organisms, including the prokaryote Vibrio harveyi, the eukaryotic malarial parasite Plasmodium falciparum, the parasitic Apicomplexan Cryptosporidium parvum, the yeast Saccharomyces cerevisiae, the worm Caenorhabditis elegans, mouse, and human. The database's web tools (on the right) include a text-based search, a function for assessing motif similarity between user-entered data and database PWMs, and a function for locating putative binding sites along user-entered nucleotide sequences
BioMagResBank (BMRB) is the publicly-accessible depository for NMR results from peptides, proteins, and nucleic acids recognized by the International Society of Magnetic Resonance and by the IUPAC-IUBMB-IUPAB Inter-Union Task Group on the Standardization of Data Bases of Protein and Nucleic Acid Structures Determined by NMR Spectroscopy. In addition, BMRB provides reference information and maintains a collection of NMR pulse sequences and computer software for biomolecular NMR
The Database explores the interactions of chemicals and proteins. It integrates information about interactions from metabolic pathways, crystal structures, binding experiments and drug-target relationships. Inferred information from phenotypic effects, text mining and chemical structure similarity is used to predict relations between chemicals. STITCH further allows exploring the network of chemical relations, also in the context of associated binding proteins.
The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. The data stored within the DIP database were curated, both, manually by expert curators and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Please, check the reference page to find articles describing the DIP database in greater detail. The Database of Ligand-Receptor Partners (DLRP) is a subset of DIP (Database of Interacting Proteins). The DLRP is a database of protein ligand and protein receptor pairs that are known to interact with each other. By interact we mean that the ligand and receptor are members of a ligand-receptor complex and, unless otherwise noted, transduce a signal. In some instances the ligand and/or receptor may form a heterocomplex with other ligands/receptors in order to be functional. We have entered the majority of interactions in DLRP as full DIP entries, with links to references and additional information
Chemical Entities of Biological Interest (ChEBI) is a freely available dictionary of 'small molecular entities'. The term 'molecular entity' encompasses any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer, etc., identifiable as a separately distinguishable entity. The molecular entities in question are either products of nature or synthetic products used to intervene in the processes of living organisms (either deliberately, as for drugs, or unintentionally', as for chemicals in the environment). The qualifier 'small' implies the exclusion of entities directly encoded by the genome, and thus as a rule nucleic acids, proteins and peptides derived from proteins by cleavage are not included.
InterPro collects information about protein sequence analysis and classification, providing access to a database of predictive protein signatures used for the classification and automatic annotation of proteins and genomes. Sequences in InterPro are classified at superfamily, family, and subfamily. InterPro predicts the occurrence of functional domains, repeats, and important sites, and adds in-depth annotation such as GO terms to the protein signatures.
During cell cycle, numerous proteins temporally and spatially localized in distinct sub-cellular regions including centrosome (spindle pole in budding yeast), kinetochore/centromere, cleavage furrow/midbody (related or homolog structures in plants and budding yeast called as phragmoplast and bud neck, respectively), telomere and spindle spatially and temporally. These sub-cellular regions play important roles in various biological processes. In this work, we have collected all proteins identified to be localized on kinetochore, centrosome, midbody, telomere and spindle from two fungi (S. cerevisiae and S. pombe) and five animals, including C. elegans, D. melanogaster, X. laevis, M. musculus and H. sapiens based on the rationale of "Seeing is believing" (Bloom K et al., 2005). Through ortholog searches, the proteins potentially localized at these sub-cellular regions were detected in 144 eukaryotes. Then the integrated and searchable database MiCroKiTS - Midbody, Centrosome, Kinetochore, Telomere and Spindle has been established.
Oral Cancer Gene Database is an initiative of the Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai. The present database, version II, consists of 374 genes. It is developed as a user friendly site that would provide the scientist, information and external links from one place. The database is accessed through a list of all genes, and Keyword Search using gene name or gene symbol, chromosomal location, CGH (in %), and molecular weight. Interaction Network shows the interaction between genes for particular biological processes and molecular functions.
The Global Proteome Machine (GPM) is a protein identification database. This data repository allows users to post and compare results. GPM's data is provided by contributors like The Informatics Factory, University of Michigan, and Pacific Northwestern National Laboratories. The GPM searchable databases are: GPMDB, pSYT, SNAP, MRM, PEPTIDE and HOT.
The Swedish Human Protein Atlas project has been set up to allow for a systematic exploration of the human proteome using Antibody-Based Proteomics. This is accomplished by combining high-throughput generation of affinity-purified antibodies with protein profiling in a multitude of tissues and cells assembled in tissue microarrays. Confocal microscopy analysis using human cell lines is performed for more detailed protein localization. The program hosts the Human Protein Atlas portal with expression profiles of human proteins in tissues and cells. The main objective of the resource centre is to produce specific antibodies to human target proteins using a high-throughput production method involving the cloning and protein expression of Protein Epitope Signature Tags (PrESTs). After purification, the antibodies are used to study expression profiles in cells and tissues and for functional analysis of the corresponding proteins in a wide range of platforms.
The Ligand-Gated Ion Channel database provides access to information about transmembrane proteins that exist under different conformations, with three primary subfamilies: the cys-loop superfamily, the ATP gated channels superfamily, and the glutamate activated cationic channels superfamily.**The development of the Ligand-Gated Ion Channel database was started in 1994, as part of Le Novère's work on the phylogeny of those receptors' subunits. It grew into a serious data resource, that served the community at large. However, it is not actively maintained anymore. In addition, bioinformatics technology evolved a lot over the last two decades, so that scientists can now generate quickly customised databases from trustworthy primary data resources. Therefore, we decided to officialy freeze the data resource. The resource will not disappear, and all the information and links will stay there. But people should not consider it as an up-to-date trustable resource.**
The UCSD Signaling Gateway Molecule Pages provide essential information on over thousands of proteins involved in cellular signaling. Each Molecule Page contains regularly updated information derived from public data sources as well as sequence analysis, references and links to other databases.