Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 26 result(s)
The Rat Genome Database is a collaborative effort between leading research institutions involved in rat genetic and genomic research. Its goal, as stated in RFA: HL-99-013 is the establishment of a Rat Genome Database, to collect, consolidate, and integrate data generated from ongoing rat genetic and genomic research efforts and make these data widely available to the scientific community. A secondary, but critical goal is to provide curation of mapped positions for quantitative trait loci, known mutations and other phenotypic data.
The dbVar is a database of genomic structural variation containing data from multiple gene studies. Users can browse data containing the number of variant cells from each study, and filter studies by organism, study type, method and genomic variant. Organisms include human, mouse, cattle and several additional animals. ***NCBI will phase out support for non-human organism data in dbSNP and dbVar beginning on September 1, 2017 ***
The project aims to examine and index the genomic diversity through the generation of complete mitochondrial and nuclear genome sequences of sharks and rays of the Pacific Rim. There is a huge diversity of elasmobranch fishes in this region, but many species are under threat because of poor management and conservation measures in many countries. It is absolutely critical that species’ identities are correct for conservation and fisheries management purposes. This project will provide this clarity of identity for both charismatic and commercially important species through the inclusion of ‘genetypes’ (ie., BioVouchers) and the application of genetic tools that utilize whole mitochondrial and nuclear genome sequences.
The Genomic Observatories Meta-Database (GEOME) is a web-based database that captures the who, what, where, and when of biological samples and associated genetic sequences. GEOME helps users with the following goals: ensure the metadata from your biological samples is findable, accessible, interoperable, and reusable; improve the quality of your data and comply with global data standards; and integrate with R, ease publication to NCBI's sequence read archive, and work with an associated LIMS. The initial use case for GEOME came from the Diversity of the Indo-Pacific Network (DIPnet) resource.
Country
The Open Archive for Miscellaneous Data (OMIX) database is a data repository developed and maintained by the National Genomics Data Center (NGDC). The database specializes in descriptions of biological studies, including genomic, proteomic, and metabolomic, as well as data that do not fit in the structured archives at other databases in NGDC. It can accept various types of studies described via a simple format and enables researchers to upload supplementary information and link to it from the publication.
The Human Ageing Genomic Resources (HAGR) is a collection of databases and tools designed to help researchers study the genetics of human ageing using modern approaches such as functional genomics, network analyses, systems biology and evolutionary analyses.
<<<!!!<<< This repository is no longer available. >>>!!!>>> The sequencing of several bird genomes and the anticipated sequencing of many more provided the impetus to develop a model organism database devoted to the taxonomic class: Aves. Birds provide model organisms important to the study of neurobiology, immunology, genetics, development, oncology, virology, cardiovascular biology, evolution and a variety of other life sciences. Many bird species are also important to agriculture, providing an enormous worldwide food source worldwide. Genomic approaches are proving invaluable to studying traits that affect meat yield, disease resistance, behavior, and bone development along with many other factors affecting productivity. In this context, BirdBase will serve both biomedical and agricultural researchers.
The Sequence Read Archive stores the raw sequencing data from such sequencing platforms as the Roche 454 GS System, the Illumina Genome Analyzer, the Applied Biosystems SOLiD System, the Helicos Heliscope, and the Complete Genomics. It archives the sequencing data associated with RNA-Seq, ChIP-Seq, Genomic and Transcriptomic assemblies, and 16S ribosomal RNA data.
Country
iDog, an integrated resource for domestic dog (Canis lupus familiaris) and wild canids, provides the worldwide dog research community a variety of data services. This includes Genes, Genomes, SNPs, Breed/Disease Traits, Gene Expressions, Single Cell, Dog-Human Homolog Diseases and Literatures. In addition, iDog provides Online tools for performing genomic data visualization and analyses.
GenBase is a genetic sequence database that accepts user submissions (mRNA, genomic DNAs, ncRNA, or small genomes such as organelles, viruses, plasmids, phages from any organism) and integrates data from INSDC.
<<<!!!<<< NCBI announced plans to retire the Clone DB web interface. Pursuant to this retirement, starting on May 27, 2019, all web pages associated with Clone DB and CloneFinder will redirect to this blog post https://ncbiinsights.ncbi.nlm.nih.gov/?s=clone+db. Links to Clone DB from the NCBI home page will also be going away. >>>!!!>>>
MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human health and disease. The projects contributing to this resource are: Mouse Genome Database (MGD) Project, Gene Expression Database (GXD) Project, Mouse Tumor Biology (MTB) Database Project, Gene Ontology (GO) Project at MGI, MouseMine Project, MouseCyc Project at MGI
The Wellcome Trust Sanger Institute is a charitably funded genomic research centre located in Hinxton, nine miles south of Cambridge in the UK. We study diseases that have an impact on health globally by investigating genomes. Building on our past achievements and based on priorities that exploit the unique expertise of our Faculty of researchers, we will lead global efforts to understand the biology of genomes. We are convinced of the importance of making this research available and accessible for all audiences. reduce global health burdens.
<<<!!!<<<Noticed 26.08.2020: The NCI CBIIT instance of the CGAP no longer exist on this website. The Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer has a new home at the NCI-funded Institute for Systems Biology Cancer Genomics Cloud available at the following location: https://mitelmandatabase.isb-cgc.org>>>!!!>>>
The IMSR is a searchable online database of mouse strains, stocks, and mutant ES cell lines available worldwide, including inbred, mutant, and genetically engineered strains. The goal of the IMSR is to assist the international scientific community in locating and obtaining mouse resources for research. Note that the data content found in the IMSR is as supplied by strain repository holders. For each strain or cell line listed in the IMSR, users can obtain information about: Where that resource is available (Repository Site); What state(s) the resource is available as (e.g. live, cryopreserved embryo or germplasm, ES cells); Links to descriptive information about a strain or ES cell line; Links to mutant alleles carried by a strain or ES cell line; Links for ordering a strain or ES cell line from a Repository; Links for contacting the Repository to send a query
The Entrez Protein Clusters database contains annotation information, publications, structures and analysis tools for related protein sequences encoded by complete genomes. The data available in the Protein Clusters Database is generated from prokaryotic genomic studies and is intended to assist researchers studying micro-organism evolution as well as other biological sciences. Available genomes include plants and viruses as well as organelles and microbial genomes.
Xenbase's mission is to provide the international research community with a comprehensive, integrated and easy to use web based resource that gives access the diverse and rich genomic, expression and functional data available from Xenopus research. Xenbase also provides a critical data sharing infrastructure for many other NIH-funded projects, and is a focal point for the Xenopus community. In addition to our primary goal of supporting Xenopus researchers, Xenbase enhances the availability and visibility of Xenopus data to the broader biomedical research community.
ZFIN serves as the zebrafish model organism database. The long term goals for ZFIN are a) to be the community database resource for the laboratory use of zebrafish, b) to develop and support integrated zebrafish genetic, genomic and developmental information, c) to maintain the definitive reference data sets of zebrafish research information, d) to link this information extensively to corresponding data in other model organism and human databases, e) to facilitate the use of zebrafish as a model for human biology and f) to serve the needs of the research community. ZIRC is the Zebrafish International Resource Center, an independent NIH-funded facility providing a wide range of zebrafish lines, probes and health services. ZFIN works closely with ZIRC to connect our genetic data with available probes and fish lines.
The Ensembl project produces genome databases for vertebrates and other eukaryotic species. Ensembl is a joint project between the European Bioinformatics Institute (EBI) and the Wellcome Trust Sanger Institute (WTSI) to develop a software system that produces and maintains automatic annotation on selected genomes.The Ensembl project was started in 1999, some years before the draft human genome was completed. Even at that early stage it was clear that manual annotation of 3 billion base pairs of sequence would not be able to offer researchers timely access to the latest data. The goal of Ensembl was therefore to automatically annotate the genome, integrate this annotation with other available biological data and make all this publicly available via the web. Since the website's launch in July 2000, many more genomes have been added to Ensembl and the range of available data has also expanded to include comparative genomics, variation and regulatory data. Ensembl is a joint project between European Bioinformatics Institute (EBI), an outstation of the European Molecular Biology Laboratory (EMBL), and the Wellcome Trust Sanger Institute (WTSI). Both institutes are located on the Wellcome Trust Genome Campus in Hinxton, south of the city of Cambridge, United Kingdom.
<<<!!!<<< This repository is no longer available>>>!!!>>>. Although the web pages are no longer available, you will still be able to download the final UniGene builds as static content from the FTP site https://ftp.ncbi.nlm.nih.gov/repository/UniGene/. You will also be able to match UniGene cluster numbers to Gene records by searching Gene with UniGene cluster numbers. For best results, restrict to the “UniGene Cluster Number” field rather than all fields in Gene. For example, a search with Mm.2108[UniGene Cluster Number] finds the mouse transthyretin Gene record (Ttr). You can use the advanced search page https://www.ncbi.nlm.nih.gov/gene/advanced to help construct these searches. Keep in mind that the Gene record contains selected Reference Sequences and GenBank mRNA sequences rather than the larger set of expressed sequences in the UniGene cluster.
In early 2010 we updated the site to facilitate more rapid transfer of our data to the public database and focus our efforts on the core mission of providing expression pattern images to the research community. The original database https://www.fruitfly.org/index.html reproduced functions available on FlyBase, complicating our updates by the requirement to re-synchronize with FlyBase updates. Our expression reports on the new site still link to FlyBase gene reports, but we no longer reproduce FlyBase functions and therefore can update expression data on an ongoing basis instead of more infrequent major releases. All the functions relating to the expression patterns remain and we soon will add an option to search expression patterns by image similarity, in addition to annotation term searches. In a transitional phase we will leave both the old and the new sites up, but the newer data (post Release 2) will appear only on the new website. We welcome any feedback or requests for additional features. - The goals of the Drosophila Genome Center are to finish the sequence of the euchromatic genome of Drosophila melanogaster to high quality and to generate and maintain biological annotations of this sequence. In addition to genomic sequencing, the BDGP is 1) producing gene disruptions using P element-mediated mutagenesis on a scale unprecedented in metazoans; 2) characterizing the sequence and expression of cDNAs; and 3) developing informatics tools that support the experimental process, identify features of DNA sequence, and allow us to present up-to-date information about the annotated sequence to the research community.
The IMPC is a confederation of international mouse phenotyping projects working towards the agreed goals of the consortium: To undertake the phenotyping of 20,000 mouse mutants over a ten year period, providing the first functional annotation of a mammalian genome. Maintain and expand a world-wide consortium of institutions with capacity and expertise to produce germ line transmission of targeted knockout mutations in embryonic stem cells for 20,000 known and predicted mouse genes. Test each mutant mouse line through a broad based primary phenotyping pipeline in all the major adult organ systems and most areas of major human disease. Through this activity and employing data annotation tools, systematically aim to discover and ascribe biological function to each gene, driving new ideas and underpinning future research into biological systems; Maintain and expand collaborative “networks” with specialist phenotyping consortia or laboratories, providing standardized secondary level phenotyping that enriches the primary dataset, and end-user, project specific tertiary level phenotyping that adds value to the mammalian gene functional annotation and fosters hypothesis driven research; and Provide a centralized data centre and portal for free, unrestricted access to primary and secondary data by the scientific community, promoting sharing of data, genotype-phenotype annotation, standard operating protocols, and the development of open source data analysis tools. Members of the IMPC may include research centers, funding organizations and corporations.