Reset all


Content Types


AID systems


Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Enhanced publication

Institution responsibility type

Institution type


Metadata standards

PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 31 result(s)
Clone DB contains information about genomic clones and cDNA and cell-based libraries for eukaryotic organisms. The database integrates this information with sequence data, map positions, and distributor information. At this time, Clone DB contains records for genomic clones and libraries, the collection of MICER mouse gene targeting clones and cell-based gene trap and gene targeting libraries from the International Knockout Mouse Consortium, Lexicon and the International Gene Trap Consortium. A planned expansion for Clone DB will add records for additional gene targeting and gene trap clones, as well as cDNA clones.
OMIM is a comprehensive, authoritative compendium of human genes and genetic phenotypes that is freely available and updated daily. OMIM is authored and edited at the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, under the direction of Dr. Ada Hamosh. Its official home is
CBS offers Comprehensive public databases of DNA- and protein sequences, macromolecular structure, g ene and protein expression levels, pathway organization and cell signalling, have been established to optimise scientific exploitation of the explosion of data within biology. Unlike many other groups in the field of biomolecular informatics, Center for Biological Sequence Analysis directs its research primarily towards topics related to the elucidation of the functional aspects of complex biological mechanisms. Among contemporary bioinformatics concerns are reliable computational interpretation of a wide range of experimental data, and the detailed understanding of the molecular apparatus behind cellular mechanisms of sequence information. By exploiting available experimental data and evidence in the design of algorithms, sequence correlations and other features of biological significance can be inferred. In addition to the computational research the center also has experimental efforts in gene expression analysis using DNA chips and data generation in relation to the physical and structural properties of DNA. In the last decade, the Center for Biological Sequence Analysis has produced a large number of computational methods, which are offered to others via WWW servers.
The Human Genetic Variation Database (HGVD) aims to provide a central resource to archive and display Japanese genetic variation and association between the variation and transcription level of genes. The database currently contains genetic variations determined by exome sequencing of 1,208 individuals and genotyping data of common variations obtained from a cohort of 3,248 individuals.
BiGG is a knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest.
The Cancer Immunome Database (TCIA) provides results of comprehensive immunogenomic analyses of next generation sequencing data (NGS) data for 19 solid cancers from The Cancer Genome Atlas (TCGA) and other datasource. The Cancer Immunome Atlas (TCIA) was developed and is maintained at the Division of Bioinformatics (ICBI). The database can be queried for the gene expression of specific immune-related gene sets, cellular composition of immune infiltrates (characterized using gene set enrichment analyses and deconvolution), neoantigens and cancer-germline antigens, HLA types, and tumor heterogeneity (estimated from cancer cell fractions). Moreover it provides survival analyses for different types immunological parameters. TCIA will be constantly updated with new data and results.
One of the world’s largest banks of biological, psychosocial and clinical data on people suffering from mental health problems. The Signature center systematically collects biological, psychosocial and clinical indicators from patients admitted to the psychiatric emergency and at four points throughout their journey in the hospital: upon arrival to the emergency room (state of crisis), at the end of their hospital stay, as well as at the beginning and the end of outpatient treatment. For all hospital clients who agree to participate, blood specimens are collected for the purpose of measuring metabolic, genetic, toxic and infectious biomarkers, while saliva samples are collected to measure sex hormones and hair samples are collected to measure stress hormones. Questionnaire has been selected to cover important dimensional aspects of mental illness such as Behaviour and Cognition (Psychosis, Depression, Anxiety, Impulsiveness, Aggression, Suicide, Addiction, Sleep),Socio-demographic Profile (Spiritual beliefs, Social functioning, Childhood experiences, Demographic, Family background) and Medical Data (Medication, Diagnosis, Long-term health, RAMQ data). On 2016, May there are more than 1150 participants and 400 for the longitudinal Follow-Up
GeneCards is a searchable, integrative database that provides comprehensive, user-friendly information on all annotated and predicted human genes. It automatically integrates gene-centric data from ~125 web sources, including genomic, transcriptomic, proteomic, genetic, clinical and functional information.
The Health and Retirement Study (HRS) is a longitudinal panel study that surveys a representative sample of more than 26,000 Americans over the age of 50 every two years. The study has collected information about income, work, assets, pension plans, health insurance, disability, physical health and functioning, cognitive functioning, genetic information and health care expenditures.
The Fragile Families & Child Wellbeing Study is following a cohort of nearly 5,000 children born in large U.S. cities between 1998 and 2000 (roughly three-quarters of whom were born to unmarried parents). We refer to unmarried parents and their children as “fragile families” to underscore that they are families and that they are at greater risk of breaking up and living in poverty than more traditional families. The core Study was originally designed to primarily address four questions of great interest to researchers and policy makers: (1) What are the conditions and capabilities of unmarried parents, especially fathers?; (2) What is the nature of the relationships between unmarried parents?; (3) How do children born into these families fare?; and (4) How do policies and environmental conditions affect families and children?
We developed a method, ChIP-sequencing (ChIP-seq), combining chromatin immunoprecipitation (ChIP) and massively parallel sequencing to identify mammalian DNA sequences bound by transcription factors in vivo. We used ChIP-seq to map STAT1 targets in interferon-gamma (IFN-gamma)-stimulated and unstimulated human HeLa S3 cells, and compared the method's performance to ChIP-PCR and to ChIP-chip for four chromosomes.For both Chromatin- immunoprecipation Transcription Factors and Histone modifications. Sequence files and the associated probability files are also provided.
Clinical Genomic Database (CGD) is a manually curated database of conditions with known genetic causes, focusing on medically significant genetic data with available interventions.
This site is dedicated to making high value health data more accessible to entrepreneurs, researchers, and policy makers in the hopes of better health outcomes for all. In a recent article, Todd Park, United States Chief Technology Officer, captured the essence of what the Health Data Initiative is all about and why our efforts here are so important.
Content type(s)
A small genotype data repository containing data used in recent papers from the Estonian Biocentre. Most of the data pertains to human population genetics. PDF files of the papers are also freely available.
Recode2 is a database of genes that utilize non-standard translation for gene expression purposes. Recoding events described in the database include programmed ribosomal frameshifting, translational bypassing (aka hopping) and mRNA specific codon redefinition. Frameshifting at a particular site often yields two protein products from one coding sequence and sometimes serves a regulatory purpose by acting as a sensor of the level of product protein or of some external ligand. Bypassing (hopping) allows the coupling of two ORFs separated on an mRNA by a coding gap. Codon redefinition occurs when a stop codon is decoded as a standard amino acid (often glutamine or tryptophan), or the 21st amino acid selenocysteine. These recoding events are in competition with standard decoding and are site specific. The efficiency of recoding is often modulated by cis-stimulators and sometimes by trans-factors. The sequences of the genes that use recoding for their expression are in the database. The recoding sites and the known stimulatory signals are annotated in the database together with notes on factors that are known to affect recoding efficiencies.
The NCI’s Cancer Genome Anatomy Project (CGAP) is an online resource designed to provide the scientific community with detailed characterization of gene expression in biological tissues. By characterizing normal, pre-cancer and cancer cells, CGAP aims to improve detection, diagnosis and treatment for the patient. Moreover, CGAP provides access to cDNA clones to the research community through a variety of distributors. CGAP provides a wide range of genomic data and resources
The Cancer Genomics Hub (CGHub) is a secure repository for storing, cataloging, and accessing cancer genome sequences, alignments, and mutation information from the Cancer Genome Atlas (TCGA) consortium and related projects. Access to CGHub Data: All researchers using CGHub must meet the access and use criteria established by the National Institutes of Health (NIH) to ensure the privacy, security, and integrity of participant data. CGHub also hosts some publicly available data, in particular data from the Cancer Cell Line Encyclopedia. All metadata is publicly available and the catalog of metadata and associated BAMs can be explored using the CGHub Data Browser.
!! OFFLINE !! A recent computer security audit has revealed security flaws in the legacy HapMap site that require NCBI to take it down immediately. We regret the inconvenience, but we are required to do this. That said, NCBI was planning to decommission this site in the near future anyway (although not quite so suddenly), as the 1,000 genomes (1KG) project has established itself as a research standard for population genetics and genomics. NCBI has observed a decline in usage of the HapMap dataset and website with its available resources over the past five years and it has come to the end of its useful life. The International HapMap Project is a multi-country effort to identify and catalog genetic similarities and differences in human beings. Using the information in the HapMap, researchers will be able to find genes that affect health, disease, and individual responses to medications and environmental factors. The Project is a collaboration among scientists and funding agencies from Japan, the United Kingdom, Canada, China, Nigeria, and the United States. All of the information generated by the Project will be released into the public domain. The goal of the International HapMap Project is to compare the genetic sequences of different individuals to identify chromosomal regions where genetic variants are shared. By making this information freely available, the Project will help biomedical researchers find genes involved in disease and responses to therapeutic drugs. In the initial phase of the Project, genetic data are being gathered from four populations with African, Asian, and European ancestry. Ongoing interactions with members of these populations are addressing potential ethical issues and providing valuable experience in conducting research with identified populations. Public and private organizations in six countries are participating in the International HapMap Project. Data generated by the Project can be downloaded with minimal constraints. The Project officially started with a meeting in October 2002 ( and is expected to take about three years.
During cell cycle, numerous proteins temporally and spatially localized in distinct sub-cellular regions including centrosome (spindle pole in budding yeast), kinetochore/centromere, cleavage furrow/midbody (related or homolog structures in plants and budding yeast called as phragmoplast and bud neck, respectively), telomere and spindle spatially and temporally. These sub-cellular regions play important roles in various biological processes. In this work, we have collected all proteins identified to be localized on kinetochore, centrosome, midbody, telomere and spindle from two fungi (S. cerevisiae and S. pombe) and five animals, including C. elegans, D. melanogaster, X. laevis, M. musculus and H. sapiens based on the rationale of "Seeing is believing" (Bloom K et al., 2005). Through ortholog searches, the proteins potentially localized at these sub-cellular regions were detected in 144 eukaryotes. Then the integrated and searchable database MiCroKiTS - Midbody, Centrosome, Kinetochore, Telomere and Spindle has been established.
LifeMap Discovery® is a compendium of embryonic development for stem cell research and regenerative medicine, constructed by integrating extensive molecular, cellular, anatomical and medical data curated from scientific literature and high-throughput data sources.
The Human Ageing Genomic Resources (HAGR) is a collection of databases and tools designed to help researchers study the genetics of human ageing using modern approaches such as functional genomics, network analyses, systems biology and evolutionary analyses.
The CPTAC Data Portal is the centralized repository for the dissemination of proteomic data collected by the Proteome Characterization Centers (PCCs) for the CPTAC program. The portal also hosts analyses of the mass spectrometry data (mapping of spectra to peptide sequences and protein identification) from the PCCs and from a CPTAC-sponsored common data analysis pipeline (CDAP).
The 1000 Genomes Project is an international collaboration to produce an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts. This resource will support genome-wide association studies and other medical research studies. The genomes of about 2500 unidentified people from about 25 populations around the world will be sequenced using next-generation sequencing technologies. The results of the study will be freely and publicly accessible to researchers worldwide.