Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 98 result(s)
Peptidome was a public repository that archived tandem mass spectrometry peptide and protein identification data generated by the scientific community. This repository is now offline and is in archival mode. All data may be obtained from the Peptidome FTP site. Due to budgetary constraints NCBI has discontinued the Peptidome Repository. All existing data and metadata files will continue to be made available from our ftp server a ftp://ftp.ncbi.nih.gov/pub/peptidome/ indefinitely. Those files are named according to their Peptidome accession number, allowing cited data to be identified and downloaded. All of the Peptidome studies have been made publicly available at the PRoteomics IDEntifications (PRIDE) database. A map of Peptidome to Pride accessions may be found at ftp://ftp.ncbi.nih.gov/pub/peptidome/peptidome-pride_map.txt. If you have any specific questions, please feel free to contact us at info@ncbi.nlm.nih.gov.
!!! >>> intrepidbio.com expired <<< !!!! Intrepid Bioinformatics serves as a community for genetic researchers and scientific programmers who need to achieve meaningful use of their genetic research data – but can’t spend tremendous amounts of time or money in the process. The Intrepid Bioinformatics system automates time consuming manual processes, shortens workflow, and eliminates the threat of lost data in a faster, cheaper, and better environment than existing solutions. The system also provides the functionality and community features needed to analyze the large volumes of Next Generation Sequencing and Single Nucleotide Polymorphism data, which is generated for a wide range of purposes from disease tracking and animal breeding to medical diagnosis and treatment.
NIAID’s TB Portals Program is a multi-national collaboration for TB data sharing and analysis to advance TB research. As a global consortium of clinicians, scientists, and IT professionals from 40 sites in 16 countries throughout eastern Europe, Asia, and sub-Saharan Africa, the TB Portals Program is a web-based, open-access repository of multi-domain TB data and tools for its analysis. Researchers can find linked socioeconomic/geographic, clinical, laboratory, radiological, and genomic data from over 7,500 international published TB patient cases with an emphasis on drug-resistant tuberculosis.
COViMS (COVID-19 Infections in MS & Related Diseases) is a joint effort of the National MS Society, Consortium of MS Centers and Multiple Sclerosis Society of Canada to capture information on outcomes of people with MS and other CNS demyelinating diseases (Neuromyelitis Optica, or MOG antibody disease) who have developed COVID-19.
OMIM is a comprehensive, authoritative compendium of human genes and genetic phenotypes that is freely available and updated daily. OMIM is authored and edited at the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, under the direction of Dr. Ada Hamosh. Its official home is omim.org.
dbEST is a division of GenBank that contains sequence data and other information on "single-pass" cDNA sequences, or "Expressed Sequence Tags", from a number of organisms. Expressed Sequence Tags (ESTs) are short (usually about 300-500 bp), single-pass sequence reads from mRNA (cDNA). Typically they are produced in large batches. They represent a snapshot of genes expressed in a given tissue and/or at a given developmental stage. They are tags (some coding, others not) of expression for a given cDNA library. Most EST projects develop large numbers of sequences. These are commonly submitted to GenBank and dbEST as batches of dozens to thousands of entries, with a great deal of redundancy in the citation, submitter and library information. To improve the efficiency of the submission process for this type of data, we have designed a special streamlined submission process and data format. dbEST also includes sequences that are longer than the traditional ESTs, or are produced as single sequences or in small batches. Among these sequences are products of differential display experiments and RACE experiments. The thing that these sequences have in common with traditional ESTs, regardless of length, quality, or quantity, is that there is little information that can be annotated in the record. If a sequence is later characterized and annotated with biological features such as a coding region, 5'UTR, or 3'UTR, it should be submitted through the regular GenBank submissions procedure (via BankIt or Sequin), even if part of the sequence is already in dbEST. dbEST is reserved for single-pass reads. Assembled sequences should not be submitted to dbEST. GenBank will accept assembled EST submissions for the forthcoming TSA (Transcriptome Shotgun Assembly) division. The individual reads which make up the assembly should be submitted to dbEST, the Trace archive or the Short Read Archive (SRA) prior to the submission of the assemblies.
We are a leading international centre for genomics and bioinformatics research. Our mandate is to advance knowledge about cancer and other diseases, to improve human health through disease prevention, diagnosis and therapeutic approaches, and to realize the social and economic benefits of genomics research.
AmoebaDB belongs to the EuPathDB family of databases and is an integrated genomic and functional genomic database for Entamoeba and Acanthamoeba parasites. In its first iteration (released in early 2010), AmoebaDB contains the genomes of three Entamoeba species (see below). AmoebaDB integrates whole genome sequence and annotation and will rapidly expand to include experimental data and environmental isolate sequences provided by community researchers . The database includes supplemental bioinformatics analyses and a web interface for data-mining.
The DOE Data Explorer (DDE) is an information tool to help you locate DOE's collections of data and non-text information and, at the same time, retrieve individual datasets within some of those collections. It includes collection citations prepared by the Office of Scientific and Technical Information, as well as citations for individual datasets submitted from DOE Data Centers and other organizations.
The WorldWide Antimalarial Resistance Network (WWARN) is a collaborative platform generating innovative resources and reliable evidence to inform the malaria community on the factors affecting the efficacy of antimalarial medicines. Access to data is provided through diverse Tools and Resources: WWARN Explorer, Molecular Surveyor K13 Methodology, Molecular Surveyor pfmdr1 & pfcrt, Molecular Surveyor dhfr & dhps.
METLIN represents the largest MS/MS collection of data with the database generated at multiple collision energies and in positive and negative ionization modes. The data is generated on multiple instrument types including SCIEX, Agilent, Bruker and Waters QTOF mass spectrometers.
The IMEx consortium is an international collaboration between a group of major public interaction data providers who have agreed to share curation effort and develop and work to a single set of curation rules when capturing data from both directly deposited interaction data or from publications in peer-reviewed journals, capture full details of an interaction in a “deep” curation model, perform a complete curation of all protein-protein interactions experimentally demonstrated within a publication, make these interaction available in a single search interface on a common website, provide the data in standards compliant download formats, make all IMEx records freely accessible under the Creative Commons Attribution License
Data deposit is supported for University of Ottawa faculty, students, and affiliated researchers. The repository is multidisciplinary and hosted on Canadian servers. It includes features such as permanent links (DOIs) which encourage citation of your dataset and help you set terms for access and reuse of your data. uOttawa Dataverse is currently optimal for small to medium datasets.
The IMSR is a searchable online database of mouse strains, stocks, and mutant ES cell lines available worldwide, including inbred, mutant, and genetically engineered strains. The goal of the IMSR is to assist the international scientific community in locating and obtaining mouse resources for research. Note that the data content found in the IMSR is as supplied by strain repository holders. For each strain or cell line listed in the IMSR, users can obtain information about: Where that resource is available (Repository Site); What state(s) the resource is available as (e.g. live, cryopreserved embryo or germplasm, ES cells); Links to descriptive information about a strain or ES cell line; Links to mutant alleles carried by a strain or ES cell line; Links for ordering a strain or ES cell line from a Repository; Links for contacting the Repository to send a query
The ENCODE Encyclopedia organizes the most salient analysis products into annotations, and provides tools to search and visualize them. The Encyclopedia has two levels of annotations: Integrative-level annotations integrate multiple types of experimental data and ground level annotations. Ground-level annotations are derived directly from the experimental data, typically produced by uniform processing pipelines.
The Brain Biodiversity Bank refers to the repository of images of and information about brain specimens contained in the collections associated with the National Museum of Health and Medicine at the Armed Forces Institute of Pathology in Washington, DC. These collections include, besides the Michigan State University Collection, the Welker Collection from the University of Wisconsin, the Yakovlev-Haleem Collection from Harvard University, the Meyer Collection from the Johns Hopkins University, and the Huber-Crosby and Crosby-Lauer Collections from the University of Michigan and the C.U. Ariëns Kappers brain collection from Amsterdam Netherlands.Introducing online atlases of the brains of humans, sheep, dolphins, and other animals. A world resource for illustrations of whole brains and stained sections from a great variety of mammals
INDEPTH is a global network of research centres that conduct longitudinal health and demographic evaluation of populations in low- and middle-income countries (LMICs). INDEPTH aims to strengthen global capacity for Health and Demographic Surveillance Systems (HDSSs), and to mount multi-site research to guide health priorities and policies in LMICs, based on up-to-date scientific evidence. The data collected by the INDEPTH Network members constitute a valuable resource of population and health data for LMIC countries. This repository aims to make well documented anonymised longitudinal microdata from these Centres available to data users.
IntAct provides a freely available, open source database system and analysis tools for molecular interaction data. All interactions are derived from literature curation or direct user submissions and are freely available.
The N3C Data Enclave is a secure portal containing a very large and extensive set of harmonized COVID-19 clinical electronic health record (EHR) data. The data can be accessed through a secure cloud Enclave hosted by NCATS and cannot be downloaded due to regulatory control. Broad access is available to investigators at institutions that sign a Data Use Agreements and via Data Use Requests by investigators. The N3C is a unique open, reproducible, transparent, collaborative team science initiative to leverage sensitive clinical data to expedite COVID-19 discoveries and improve health outcomes.
The information in the Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer relates cytogenetic changes and their genomic consequences, in particular gene fusions, to tumor characteristics, based either on individual cases or associations. All the data have been manually culled from the literature by Felix Mitelman in collaboration with Bertil Johansson and Fredrik Mertens.
Greengenes is an Earth Sciences website that assists clinical and environmental microbiologists from around the globe in classifying microorganisms from their local environments. A 16S rRNA gene database addresses limitations of public repositories by providing chimera screening, standard alignment, and taxonomic classification using multiple published taxonomies.
The PeptideAtlas validates expressed proteins to provide eukaryotic genome data. Peptide Atlas provides data to advance biological discoveries in humans. The PeptideAtlas accepts proteomic data from high-throughput processes and encourages data submission.
AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals’ transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated.