Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 64 result(s)
The IMSR is a searchable online database of mouse strains, stocks, and mutant ES cell lines available worldwide, including inbred, mutant, and genetically engineered strains. The goal of the IMSR is to assist the international scientific community in locating and obtaining mouse resources for research. Note that the data content found in the IMSR is as supplied by strain repository holders. For each strain or cell line listed in the IMSR, users can obtain information about: Where that resource is available (Repository Site); What state(s) the resource is available as (e.g. live, cryopreserved embryo or germplasm, ES cells); Links to descriptive information about a strain or ES cell line; Links to mutant alleles carried by a strain or ES cell line; Links for ordering a strain or ES cell line from a Repository; Links for contacting the Repository to send a query
Country
With ARS - Antimicrobial Resistance Surveillance in Germany - the infrastructure for a nationwide surveillance of antimicrobial resistance has been established, which covers both the inpatient medical care and the ambulatory care sector. This is intended to reliable data on the epidemiology of antimicrobial resistance in Germany and differential statements provided by structural features of the health care and by region are possible. ARS is designed as a laboratory-based surveillance system for continuous collection of resistance data from routine for the full range of clinically relevant bacterial pathogens. Project participants and thus data suppliers are laboratories that analyze samples of medical facilities and doctors' offices microbiologically.
The Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) is a team of researchers, data specialists and computer system developers who are supporting the development of a data management system to store scientific data generated by Gulf of Mexico researchers. The Master Research Agreement between BP and the Gulf of Mexico Alliance that established the Gulf of Mexico Research Initiative (GoMRI) included provisions that all data collected or generated through the agreement must be made available to the public. The Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) is the vehicle through which GoMRI is fulfilling this requirement. The mission of GRIIDC is to ensure a data and information legacy that promotes continual scientific discovery and public awareness of the Gulf of Mexico Ecosystem.
Country
Silkworm Pathogen Database (SilkPathDB) is a comprehensive resource for studying on pathogens of silkworm, including microsporidia, fungi, bacteria and virus. SilkPathDB provides access to not only genomic data including functional annotation of genes and gene products, but also extensive biological information for gene expression data and corresponding researches. SilkPathDB will be help with researches on pathogens of silkworm as well as other Lepidoptera insects.
Country
We are a leading international centre for genomics and bioinformatics research. Our mandate is to advance knowledge about cancer and other diseases, to improve human health through disease prevention, diagnosis and therapeutic approaches, and to realize the social and economic benefits of genomics research.
MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human health and disease. The projects contributing to this resource are: Mouse Genome Database (MGD) Project, Gene Expression Database (GXD) Project, Mouse Tumor Biology (MTB) Database Project, Gene Ontology (GO) Project at MGI, MouseMine Project, MouseCyc Project at MGI
Country
CBS offers Comprehensive public databases of DNA- and protein sequences, macromolecular structure, g ene and protein expression levels, pathway organization and cell signalling, have been established to optimise scientific exploitation of the explosion of data within biology. Unlike many other groups in the field of biomolecular informatics, Center for Biological Sequence Analysis directs its research primarily towards topics related to the elucidation of the functional aspects of complex biological mechanisms. Among contemporary bioinformatics concerns are reliable computational interpretation of a wide range of experimental data, and the detailed understanding of the molecular apparatus behind cellular mechanisms of sequence information. By exploiting available experimental data and evidence in the design of algorithms, sequence correlations and other features of biological significance can be inferred. In addition to the computational research the center also has experimental efforts in gene expression analysis using DNA chips and data generation in relation to the physical and structural properties of DNA. In the last decade, the Center for Biological Sequence Analysis has produced a large number of computational methods, which are offered to others via WWW servers.
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
Project Tycho® is a project at the University of Pittsburgh to advance the availability and use of public health data for science and policy making. Currently, the Project Tycho® database includes data from all weekly notifiable disease reports for the United States dating back to 1888. These data are freely available to anybody interested. Additional U.S. and international data will be released twice yearly.
This resource allows users to search for and compare influenza virus genomes and gene sequences taken from GenBank. It also provides a virus sequence annotation tool and links to other influenza resources: NIAID project, JCVI Flu, Influenza research database, CDC Flu, Vaccine Selection and WHO Flu.
The dbMHC database provides an open, publicly accessible platform for DNA and clinical data related to the human Major Histocompatibility Complex (MHC). The dbMHC provides access to human leukocyte antigen (HLA) sequences, HLA allele and haplotype frequencies, and clinical datasets.
BiGG is a knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest.
The Cancer Immunome Database (TCIA) provides results of comprehensive immunogenomic analyses of next generation sequencing data (NGS) data for 19 solid cancers from The Cancer Genome Atlas (TCGA) and other datasource. The Cancer Immunome Atlas (TCIA) was developed and is maintained at the Division of Bioinformatics (ICBI). The database can be queried for the gene expression of specific immune-related gene sets, cellular composition of immune infiltrates (characterized using gene set enrichment analyses and deconvolution), neoantigens and cancer-germline antigens, HLA types, and tumor heterogeneity (estimated from cancer cell fractions). Moreover it provides survival analyses for different types immunological parameters. TCIA will be constantly updated with new data and results.
The Genome database contains annotations and analysis of eukaryotic and prokaryotic genomes, as well as tools that allow users to compare genomes and gene sequences from humans, microbes, plants, viruses and organelles. Users can browse by organism, and view genome maps and protein clusters.
Country
MyTardis began at Monash University to solve the problem of users needing to store large datasets and share them with collaborators online. Its particular focus is on integration with scientific instruments, instrument facilities and research lab file storage. Our belief is that the less effort a researcher has to expend safely storing data, the more likely they are to do so. This approach has flourished with MyTardis capturing data from areas such as protein crystallography, electron microscopy, medical imaging and proteomics and with deployments at Australian institutions such as University of Queensland, RMIT, University of Sydney and the Australian Synchrotron. Data access via https://mytardis.massive.org.au/ and http://vera183.its.monash.edu.au/public_data/ and see 'remarks'.
GENCODE is a scientific project in genome research and part of the ENCODE (ENCyclopedia Of DNA Elements) scale-up project. The GENCODE consortium was initially formed as part of the pilot phase of the ENCODE project to identify and map all protein-coding genes within the ENCODE regions (approx. 1% of Human genome). Given the initial success of the project, GENCODE now aims to build an “Encyclopedia of genes and genes variants” by identifying all gene features in the human and mouse genome using a combination of computational analysis, manual annotation, and experimental validation, and annotating all evidence-based gene features in the entire human genome at a high accuracy.
Country
We developed a method, ChIP-sequencing (ChIP-seq), combining chromatin immunoprecipitation (ChIP) and massively parallel sequencing to identify mammalian DNA sequences bound by transcription factors in vivo. We used ChIP-seq to map STAT1 targets in interferon-gamma (IFN-gamma)-stimulated and unstimulated human HeLa S3 cells, and compared the method's performance to ChIP-PCR and to ChIP-chip for four chromosomes.For both Chromatin- immunoprecipation Transcription Factors and Histone modifications. Sequence files and the associated probability files are also provided.
Country
The Open REGulatory ANNOtation database (ORegAnno) is an open database for the curation of known regulatory elements from scientific literature. Annotation is collected from users worldwide for various biological assays and is automatically cross-referenced against PubMED, Entrez Gene, EnsEMBL, dbSNP, the eVOC: Cell type ontology, and the Taxonomy database, where appropriate, with information regarding the original experimentation performed (evidence). ORegAnno further provides an open validation process for all regulatory annotation in the public domain. Assigned validators receive notification of new records in the database and are able to cross-reference the citation to ensure record integrity. Validators have the ability to modify any record (deprecating the old record and creating a new one) if an error is found. Further, any contributor to the database can comment on any annotation by marking errors, or adding special reports into function as they see fit. These features of ORegAnno ensure that the collection is of the highest quality and uniquely provides a dynamic view of our changing understanding of gene regulation in the various genomes.
Country
Edmond is the institutional repository of the Max Planck Society for public research data. It enables Max Planck scientists to create citable scientific assets by describing, enriching, sharing, exposing, linking, publishing and archiving research data of all kinds. A unique feature of Edmond is the dedicated metadata management, which supports a non-restrictive metadata schema definition, as simple as you like or as complex as your parameters require. Further on, all objects within Edmond have a unique identifier and therefore can be clearly referenced in publications or reused in other contexts.
Country
Oral Cancer Gene Database is an initiative of the Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai. The present database, version II, consists of 374 genes. It is developed as a user friendly site that would provide the scientist, information and external links from one place. The database is accessed through a list of all genes, and Keyword Search using gene name or gene symbol, chromosomal location, CGH (in %), and molecular weight. Interaction Network shows the interaction between genes for particular biological processes and molecular functions.
This site is dedicated to making high value health data more accessible to entrepreneurs, researchers, and policy makers in the hopes of better health outcomes for all. In a recent article, Todd Park, United States Chief Technology Officer, captured the essence of what the Health Data Initiative is all about and why our efforts here are so important.