Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 19 result(s)
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
This resource allows users to search for and compare influenza virus genomes and gene sequences taken from GenBank. It also provides a virus sequence annotation tool and links to other influenza resources: NIAID project, JCVI Flu, Influenza research database, CDC Flu, Vaccine Selection and WHO Flu. NOTE: The redirects that are planned for completion by May 2024 will NOT impact the Influenza Virus Resource in any way. The Influenza Virus Resource will continue to be available, serving up data to support our Flu-research community.
MGnify (formerly: EBI Metagenomics) offers an automated pipeline for the analysis and archiving of microbiome data to help determine the taxonomic diversity and functional & metabolic potential of environmental samples. Users can submit their own data for analysis or freely browse all of the analysed public datasets held within the repository. In addition, users can request analysis of any appropriate dataset within the European Nucleotide Archive (ENA). User-submitted or ENA-derived datasets can also be assembled on request, prior to analysis.
The IMPC is a confederation of international mouse phenotyping projects working towards the agreed goals of the consortium: To undertake the phenotyping of 20,000 mouse mutants over a ten year period, providing the first functional annotation of a mammalian genome. Maintain and expand a world-wide consortium of institutions with capacity and expertise to produce germ line transmission of targeted knockout mutations in embryonic stem cells for 20,000 known and predicted mouse genes. Test each mutant mouse line through a broad based primary phenotyping pipeline in all the major adult organ systems and most areas of major human disease. Through this activity and employing data annotation tools, systematically aim to discover and ascribe biological function to each gene, driving new ideas and underpinning future research into biological systems; Maintain and expand collaborative “networks” with specialist phenotyping consortia or laboratories, providing standardized secondary level phenotyping that enriches the primary dataset, and end-user, project specific tertiary level phenotyping that adds value to the mammalian gene functional annotation and fosters hypothesis driven research; and Provide a centralized data centre and portal for free, unrestricted access to primary and secondary data by the scientific community, promoting sharing of data, genotype-phenotype annotation, standard operating protocols, and the development of open source data analysis tools. Members of the IMPC may include research centers, funding organizations and corporations.
IntAct provides a freely available, open source database system and analysis tools for molecular interaction data. All interactions are derived from literature curation or direct user submissions and are freely available.
!!! >>> the repository is offline >>> !!! GOBASE is a taxonomically broad organelle genome database that organizes and integrates diverse data related to mitochondria and chloroplasts. GOBASE is currently expanding to include information on representative bacteria that are thought to be specifically related to the bacterial ancestors of mitochondria and chloroplasts
The MG-RAST server is an open source system for annotation and comparative analysis of metagenomes. Users can upload raw sequence data in fasta format; the sequences will be normalized and processed and summaries automatically generated. The server provides several methods to access the different data types, including phylogenetic and metabolic reconstructions, and the ability to compare the metabolism and annotations of one or more metagenomes and genomes. In addition, the server offers a comprehensive search capability. Access to the data is password protected, and all data generated by the automated pipeline is available for download in a variety of common formats. MG-RAST has become an unofficial repository for metagenomic data, providing a means to make your data public so that it is available for download and viewing of the analysis without registration, as well as a static link that you can use in publications. It also requires that you include experimental metadata about your sample when it is made public to increase the usefulness to the community.
This site provides access to complete, annotated genomes from bacteria and archaea (present in the European Nucleotide Archive) through the Ensembl graphical user interface (genome browser). Ensembl Bacteria contains genomes from annotated INSDC records that are loaded into Ensembl multi-species databases, using the INSDC annotation import pipeline.
<<<!!!<<< The NCBI BioSystems Database will be retired in March 2022. >>>!!!>>> This retirement includes the representation of BioSystems records in the NCBI Entrez system and viewers of BioSystems content. NCBI now provides metabolic pathway and other biosystems data through the regularly updated PubChem Pathways resource (https://pubchemdocs.ncbi.nlm.nih.gov/pathways) that offers a fresh, extended, and more modern interface.
>>>!!!<<< GeneDB will be taken offline 1st of August 2021, as none of the genomes are curated at Sanger anymore. All genomes on GeneDB can now be found on PlasmoDB, FungiDB, TriTrypDB and Wormbase Parasite. >>>!!!<<<
The Conserved Domain Database is a resource for the annotation of functional units in proteins. Its collection of domain models includes a set curated by NCBI, which utilizes 3D structure to provide insights into sequence/structure/function relationships
TPA is a database that contains sequences built from the existing primary sequence data in GenBank. TPA records are retrieved through the Nucleotide Database and feature information on the sequence, how it was cataloged, and proper way to cite the sequence information.
The Cancer Cell Line Encyclopedia project is a collaboration between the Broad Institute, and the Novartis Institutes for Biomedical Research and its Genomics Institute of the Novartis Research Foundation to conduct a detailed genetic and pharmacologic characterization of a large panel of human cancer models, to develop integrated computational analyses that link distinct pharmacologic vulnerabilities to genomic patterns and to translate cell line integrative genomics into cancer patient stratification. The CCLE provides public access to genomic data, analysis and visualization for about 1000 cell lines.
Country
>>>!!!<<<As stated 2017-05-23 Cancer GEnome Mine is no longer available >>>!!!<<< Cancer GEnome Mine is a public database for storing clinical information about tumor samples and microarray data, with emphasis on array comparative genomic hybridization (aCGH) and data mining of gene copy number changes.
I2D (Interologous Interaction Database) is an on-line database of known and predicted mammalian and eukaryotic protein-protein interactions. It has been built by mapping high-throughput (HTP) data between species. Thus, until experimentally verified, these interactions should be considered "predictions". It remains one of the most comprehensive sources of known and predicted eukaryotic PPI. I2D includes data for S. cerevisiae, C. elegans, D. melonogaster, R. norvegicus, M. musculus, and H. sapiens.
Country
ALEXA is a microarray design platform for 'alternative expression analysis'. This platform facilitates the design of expression arrays for analysis of mRNA isoforms generated from a single locus by the use of alternative transcription initiation, splicing and polyadenylation sites. We use the term 'ALEXA' to describe a collection of novel genomic methods for 'alternative expression' analysis. 'Alternative expression' refers to the identification and quantification of alternative mRNA transcripts produced by alternative transcript initiation, alternative splicing and alternative polyadenylation. This website provides supplementary materials, source code and other downloads for recent publications describing our studies of alternative expression (AE). Most recently we have developed a method, 'ALEXA-Seq' and associated resources for alternative expression analysis by massively parallel RNA sequencing.
The Ensembl genome annotation system, developed jointly by the EBI and the Wellcome Trust Sanger Institute, has been used for the annotation, analysis and display of vertebrate genomes since 2000. Since 2009, the Ensembl site has been complemented by the creation of five new sites, for bacteria, protists, fungi, plants and invertebrate metazoa, enabling users to use a single collection of (interactive and programatic) interfaces for accessing and comparing genome-scale data from species of scientific interest from across the taxonomy. In each domain, we aim to bring the integrative power of Ensembl tools for comparative analysis, data mining and visualisation across genomes of scientific interest, working in collaboration with scientific communities to improve and deepen genome annotation and interpretation.