Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 12 result(s)
The Mouse Tumor Biology (MTB) Database supports the use of the mouse as a model system of hereditary cancer by providing electronic access to: Information on endogenous spontaneous and induced tumors in mice, including tumor frequency & latency data, Information on genetically defined mice (inbred, hybrid, mutant, and genetically engineered strains of mice) in which tumors arise, Information on genetic factors associated with tumor susceptibility in mice and somatic genetic-mutations observed in the tumors, Tumor pathology reports and images, References, supporting MTB data and Links to other online resources for cancer.
The Protein Data Bank (PDB) archive is the single worldwide repository of information about the 3D structures of large biological molecules, including proteins and nucleic acids. These are the molecules of life that are found in all organisms including bacteria, yeast, plants, flies, other animals, and humans. Understanding the shape of a molecule helps to understand how it works. This knowledge can be used to help deduce a structure's role in human health and disease, and in drug development. The structures in the archive range from tiny proteins and bits of DNA to complex molecular machines like the ribosome.
The Maize Genetics and Genomics Database focuses on collecting data related to the crop plant and model organism Zea mays. The project's goals are to synthesize, display, and provide access to maize genomics and genetics data, prioritizing mutant and phenotype data and tools, structural and genetic map sets, and gene models. MaizeGDB also aims to make the Maize Newsletter available, and provide support services to the community of maize researchers. MaizeGDB is working with the Schnable lab, the Panzea project, The Genome Reference Consortium, and iPlant Collaborative to create a plan for archiving, dessiminating, visualizing, and analyzing diversity data. MMaizeGDB is short for Maize Genetics/Genomics Database. It is a USDA/ARS funded project to integrate the data found in MaizeDB and ZmDB into a single schema, develop an effective interface to access this data, and develop additional tools to make data analysis easier. Our goal in the long term is a true next-generation online maize database.aize genetics and genomics database.
The Restriction Enzyme Database is a collection of information about restriction enzymes, methylases, the microorganisms from which they have been isolated, recognition sequences, cleavage sites, methylation specificity, the commercial availability of the enzymes, and references - both published and unpublished observations (dating back to 1952). REBASE is updated daily and is constantly expanding.
TreeGenes is a genomic, phenotypic, and environmental data resource for forest tree species. The TreeGenes database and Dendrome project provide custom informatics tools to manage the flood of information.The database contains several curated modules that support the storage of data and provide the foundation for web-based searches and visualization tools. GMOD GUI tools such as CMAP for genetic maps and GBrowse for genome and transcriptome assemblies are implemented here. A sample tracking system, known as the Forest Tree Genetic Stock Center, sits at the forefront of most large-scale projects. Barcode identifiers assigned to the trees during sample collection are maintained in the database to identify an individual through DNA extraction, resequencing, genotyping and phenotyping. DiversiTree, a user-friendly desktop-style interface, queries the TreeGenes database and is designed for bulk retrieval of resequencing data. CartograTree combines geo-referenced individuals with relevant ecological and trait databases in a user-friendly map-based interface. ---- The Conifer Genome Network (CGN) is a virtual nexus for researchers working in conifer genomics. The CGN web site is maintained by the Dendrome Project at the University of California, Davis.
The CATH database is a hierarchical domain classification of protein structures in the Protein Data Bank. Protein structures are classified using a combination of automated and manual procedures. There are four major levels in the CATH hierarchy; Class, Architecture, Topology and Homologous superfamily.
With the creation of the Metabolomics Data Repository managed by Data Repository and Coordination Center (DRCC), the NIH acknowledges the importance of data sharing for metabolomics. Metabolomics represents the systematic study of low molecular weight molecules found in a biological sample, providing a "snapshot" of the current and actual state of the cell or organism at a specific point in time. Thus, the metabolome represents the functional activity of biological systems. As with other ‘omics’, metabolites are conserved across animals, plants and microbial species, facilitating the extrapolation of research findings in laboratory animals to humans. Common technologies for measuring the metabolome include mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), which can measure hundreds to thousands of unique chemical entities. Data sharing in metabolomics will include primary raw data and the biological and analytical meta-data necessary to interpret these data. Through cooperation between investigators, metabolomics laboratories and data coordinating centers, these data sets should provide a rich resource for the research community to enhance preclinical, clinical and translational research.
The 1000 Genomes Project is an international collaboration to produce an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts. This resource will support genome-wide association studies and other medical research studies. The genomes of about 2500 unidentified people from about 25 populations around the world will be sequenced using next-generation sequencing technologies. The results of the study will be freely and publicly accessible to researchers worldwide. The International Genome Sample Resource (IGSR) has been established at EMBL-EBI to continue supporting data generated by the 1000 Genomes Project, supplemented with new data and new analysis.
<<<!!!<<< This repository is no longer available. >>>!!!>>> PATRIC will go offline by mid-December2022. Here is what you need to know. As announced previously, PATRIC, the bacterial BRC, and IRD / ViPR, the viral BRCs, are being merged into the new Bacterial and Viral Bioinformatics Resource Center (BV-BRC). BV-BRC combines the data, tools, and technologies from these BRCs to provide an integrated resource for bacterial and viral genomics-based infectious disease research.
The NCBI Taxonomy database is a curated set of names and classifications for all of the organisms that are represented in GenBank. The EMBL and DDBJ databases, as well as GenBank, now use the NCBI Taxonomy as the standard classification for nucleotide sequences. Taxonomy Contains the names and phylogenetic lineages of more than 160,000 organisms that have molecular data in the NCBI databases. New taxa are added to the Taxonomy database as data are deposited for them. When new sequences are submitted to GenBank, the submission is checked for new organism names, which are then classified and added to the Taxonomy database.