Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 11 result(s)
!!! >>> intrepidbio.com expired <<< !!!! Intrepid Bioinformatics serves as a community for genetic researchers and scientific programmers who need to achieve meaningful use of their genetic research data – but can’t spend tremendous amounts of time or money in the process. The Intrepid Bioinformatics system automates time consuming manual processes, shortens workflow, and eliminates the threat of lost data in a faster, cheaper, and better environment than existing solutions. The system also provides the functionality and community features needed to analyze the large volumes of Next Generation Sequencing and Single Nucleotide Polymorphism data, which is generated for a wide range of purposes from disease tracking and animal breeding to medical diagnosis and treatment.
Bioconductor provides tools for the analysis and comprehension of high-throughput genomic data. Bioconductor uses the R statistical programming language, and is open source and open development. It has two releases each year, and an active user community. Bioconductor is also available as an AMI (Amazon Machine Image) and a series of Docker images.
IntAct provides a freely available, open source database system and analysis tools for molecular interaction data. All interactions are derived from literature curation or direct user submissions and are freely available.
The NCBI Short Genetic Variations database, commonly known as dbSNP, catalogs short variations in nucleotide sequences from a wide range of organisms. These variations include single nucleotide variations, short nucleotide insertions and deletions, short tandem repeats and microsatellites. Short Genetic Variations may be common, thus representing true polymorphisms, or they may be rare. Some rare human entries have additional information associated withthem, including disease associations, genotype information and allele origin, as some variations are somatic rather than germline events. ***NCBI will phase out support for non-human organism data in dbSNP and dbVar beginning on September 1, 2017***
This site provides access to complete, annotated genomes from bacteria and archaea (present in the European Nucleotide Archive) through the Ensembl graphical user interface (genome browser). Ensembl Bacteria contains genomes from annotated INSDC records that are loaded into Ensembl multi-species databases, using the INSDC annotation import pipeline.
The Conserved Domain Database is a resource for the annotation of functional units in proteins. Its collection of domain models includes a set curated by NCBI, which utilizes 3D structure to provide insights into sequence/structure/function relationships
TPA is a database that contains sequences built from the existing primary sequence data in GenBank. TPA records are retrieved through the Nucleotide Database and feature information on the sequence, how it was cataloged, and proper way to cite the sequence information.
The Ensembl genome annotation system, developed jointly by the EBI and the Wellcome Trust Sanger Institute, has been used for the annotation, analysis and display of vertebrate genomes since 2000. Since 2009, the Ensembl site has been complemented by the creation of five new sites, for bacteria, protists, fungi, plants and invertebrate metazoa, enabling users to use a single collection of (interactive and programatic) interfaces for accessing and comparing genome-scale data from species of scientific interest from across the taxonomy. In each domain, we aim to bring the integrative power of Ensembl tools for comparative analysis, data mining and visualisation across genomes of scientific interest, working in collaboration with scientific communities to improve and deepen genome annotation and interpretation.
The Ensembl project produces genome databases for vertebrates and other eukaryotic species. Ensembl is a joint project between the European Bioinformatics Institute (EBI) and the Wellcome Trust Sanger Institute (WTSI) to develop a software system that produces and maintains automatic annotation on selected genomes.The Ensembl project was started in 1999, some years before the draft human genome was completed. Even at that early stage it was clear that manual annotation of 3 billion base pairs of sequence would not be able to offer researchers timely access to the latest data. The goal of Ensembl was therefore to automatically annotate the genome, integrate this annotation with other available biological data and make all this publicly available via the web. Since the website's launch in July 2000, many more genomes have been added to Ensembl and the range of available data has also expanded to include comparative genomics, variation and regulatory data. Ensembl is a joint project between European Bioinformatics Institute (EBI), an outstation of the European Molecular Biology Laboratory (EMBL), and the Wellcome Trust Sanger Institute (WTSI). Both institutes are located on the Wellcome Trust Genome Campus in Hinxton, south of the city of Cambridge, United Kingdom.