Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 57 result(s)
Pubchem contains 3 databases. 1. PubChem BioAssay: The PubChem BioAssay Database contains bioactivity screens of chemical substances described in PubChem Substance. It provides searchable descriptions of each bioassay, including descriptions of the conditions and readouts specific to that screening procedure. 2. PubChem Compound: The PubChem Compound Database contains validated chemical depiction information provided to describe substances in PubChem Substance. Structures stored within PubChem Compounds are pre-clustered and cross-referenced by identity and similarity groups. 3. PubChem Substance. The PubChem Substance Database contains descriptions of samples, from a variety of sources, and links to biological screening results that are available in PubChem BioAssay. If the chemical contents of a sample are known, the description includes links to PubChem Compound.
The tree of life links all biodiversity through a shared evolutionary history. This project will produce the first online, comprehensive first-draft tree of all 1.8 million named species, accessible to both the public and scientific communities. Assembly of the tree will incorporate previously-published results, with strong collaborations between computational and empirical biologists to develop, test and improve methods of data synthesis. This initial tree of life will not be static; instead, we will develop tools for scientists to update and revise the tree as new data come in. Early release of the tree and tools will motivate data sharing and facilitate ongoing synthesis of knowledge.
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
FungiDB belongs to the EuPathDB family of databases and is an integrated genomic and functional genomic database for the kingdom Fungi. FungiDB was first released in early 2011 as a collaborative project between EuPathDB and the group of Jason Stajich (University of California, Riverside). At the end of 2015, FungiDB was integrated into the EuPathDB bioinformatic resource center. FungiDB integrates whole genome sequence and annotation and also includes experimental and environmental isolate sequence data. The database includes comparative genomics, analysis of gene expression, and supplemental bioinformatics analyses and a web interface for data-mining.
<<<!!!<<< Effective May 2024, NCBI's Assembly resource will no longer be available. NCBI Assembly data can now be found on the NCBI Datasets genome pages. https://www.re3data.org/repository/r3d100014298 >>>!!!>>> A database providing information on the structure of assembled genomes, assembly names and other meta-data, statistical reports, and links to genomic sequence data.
MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human health and disease. The projects contributing to this resource are: Mouse Genome Database (MGD) Project, Gene Expression Database (GXD) Project, Mouse Tumor Biology (MTB) Database Project, Gene Ontology (GO) Project at MGI, MouseMine Project, MouseCyc Project at MGI
Country
DEG hosts records of currently available essential genomic elements, such as protein-coding genes and non-coding RNAs, among bacteria, archaea and eukaryotes. Essential genes in a bacterium constitute a minimal genome, forming a set of functional modules, which play key roles in the emerging field, synthetic biology.
IntEnz contains the recommendation of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzyme-catalyzed reactions. Users can browse by enzyme classification or use advanced search options to search enzymes by class, subclass and sub-subclass information.
Country
<<<!!!<<< This repository is no longer available. >>>!!!>>> Message since 2018-06: This virtual host is being reconstructed.
Country
SilkDB is a database of the integrated genome resource for the silkworm, Bombyx mori. This database provides access to not only genomic data including functional annotation of genes, gene products and chromosomal mapping, but also extensive biological information such as microarray expression data, ESTs and corresponding references. SilkDB will be useful for the silkworm research community as well as comparative genomics
Country
Oral Cancer Gene Database is an initiative of the Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai. The present database, version II, consists of 374 genes. It is developed as a user friendly site that would provide the scientist, information and external links from one place. The database is accessed through a list of all genes, and Keyword Search using gene name or gene symbol, chromosomal location, CGH (in %), and molecular weight. Interaction Network shows the interaction between genes for particular biological processes and molecular functions.
Country
The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. The latest release of DrugBank (version 5.1.1, released 2018-07-03) contains 11,881 drug entries including 2,526 approved small molecule drugs, 1,184 approved biotech (protein/peptide) drugs, 129 nutraceuticals and over 5,751 experimental drugs. Additionally, 5,132 non-redundant protein (i.e. drug target/enzyme/transporter/carrier) sequences are linked to these drug entries. Each DrugCard entry contains more than 200 data fields with half of the information being devoted to drug/chemical data and the other half devoted to drug target or protein data.
M-CSA is a database of enzyme reaction mechanisms. It provides annotation on the protein, catalytic residues, cofactors, and the reaction mechanisms of hundreds of enzymes. There are two kinds of entries in M-CSA. 'Detailed mechanism' entries are more complete and show the individual chemical steps of the mechanism as schemes with electron flow arrows. 'Catalytic Site' entries annotate the catalytic residues necessary for the reaction, but do not show the mechanism. The M-CSA (Mechanism and Catalytic Site Atlas) represents a unified resource that combines the data in both MACiE and the CSA
Project Achilles is a systematic effort aimed at identifying and cataloging genetic vulnerabilities across hundreds of genomically characterized cancer cell lines. The project uses genome-wide genetic perturbation reagents (shRNAs or Cas9/sgRNAs) to silence or knock-out individual genes and identify those genes that affect cell survival. Large-scale functional screening of cancer cell lines provides a complementary approach to those studies that aim to characterize the molecular alterations (e.g. mutations, copy number alterations) of primary tumors, such as The Cancer Genome Atlas (TCGA). The overall goal of the project is to identify cancer genetic dependencies and link them to molecular characteristics in order to prioritize targets for therapeutic development and identify the patient population that might benefit from such targets. Project Achilles data is hosted on the Cancer Dependency Map Portal (DepMap) where it has been harmonized with our genomics and cellular models data. You can access the latest and all past datasets here: https://depmap.org/portal/download/all/
Country
During cell cycle, numerous proteins temporally and spatially localized in distinct sub-cellular regions including centrosome (spindle pole in budding yeast), kinetochore/centromere, cleavage furrow/midbody (related or homolog structures in plants and budding yeast called as phragmoplast and bud neck, respectively), telomere and spindle spatially and temporally. These sub-cellular regions play important roles in various biological processes. In this work, we have collected all proteins identified to be localized on kinetochore, centrosome, midbody, telomere and spindle from two fungi (S. cerevisiae and S. pombe) and five animals, including C. elegans, D. melanogaster, X. laevis, M. musculus and H. sapiens based on the rationale of "Seeing is believing" (Bloom K et al., 2005). Through ortholog searches, the proteins potentially localized at these sub-cellular regions were detected in 144 eukaryotes. Then the integrated and searchable database MiCroKiTS - Midbody, Centrosome, Kinetochore, Telomere and Spindle has been established.
The HomoloGene database provides a system for the automated detection of homologs among annotated genes of genomes across multiple species. These homologs are fully documented and organized by homology group. HomoloGene processing uses proteins from input organisms to compare and sequence homologs, mapping back to corresponding DNA sequences.
<<<!!!<<< OFFLINE >>>!!!>>> A recent computer security audit has revealed security flaws in the legacy HapMap site that require NCBI to take it down immediately. We regret the inconvenience, but we are required to do this. That said, NCBI was planning to decommission this site in the near future anyway (although not quite so suddenly), as the 1,000 genomes (1KG) project has established itself as a research standard for population genetics and genomics. NCBI has observed a decline in usage of the HapMap dataset and website with its available resources over the past five years and it has come to the end of its useful life. The International HapMap Project is a multi-country effort to identify and catalog genetic similarities and differences in human beings. Using the information in the HapMap, researchers will be able to find genes that affect health, disease, and individual responses to medications and environmental factors. The Project is a collaboration among scientists and funding agencies from Japan, the United Kingdom, Canada, China, Nigeria, and the United States. All of the information generated by the Project will be released into the public domain. The goal of the International HapMap Project is to compare the genetic sequences of different individuals to identify chromosomal regions where genetic variants are shared. By making this information freely available, the Project will help biomedical researchers find genes involved in disease and responses to therapeutic drugs. In the initial phase of the Project, genetic data are being gathered from four populations with African, Asian, and European ancestry. Ongoing interactions with members of these populations are addressing potential ethical issues and providing valuable experience in conducting research with identified populations. Public and private organizations in six countries are participating in the International HapMap Project. Data generated by the Project can be downloaded with minimal constraints. The Project officially started with a meeting in October 2002 (https://www.genome.gov/10005336/) and is expected to take about three years.
<<<!!!<<< This repository is no longer available. >>>!!!>>> BioVeL is a virtual e-laboratory that supports research on biodiversity issues using large amounts of data from cross-disciplinary sources. BioVeL supports the development and use of workflows to process data. It offers the possibility to either use already made workflows or create own. BioVeL workflows are stored in MyExperiment - Biovel Group http://www.myexperiment.org/groups/643/content. They are underpinned by a range of analytical and data processing functions (generally provided as Web Services or R scripts) to support common biodiversity analysis tasks. You can find the Web Services catalogued in the BiodiversityCatalogue.
Gene Expression Omnibus: a public functional genomics data repository supporting MIAME-compliant data submissions. Array- and sequence-based data are accepted. Tools are provided to help users query and download experiments and curated gene expression profiles.
The Protein Data Bank (PDB) is an archive of experimentally determined three-dimensional structures of biological macromolecules that serves a global community of researchers, educators, and students. The data contained in the archive include atomic coordinates, crystallographic structure factors and NMR experimental data. Aside from coordinates, each deposition also includes the names of molecules, primary and secondary structure information, sequence database references, where appropriate, and ligand and biological assembly information, details about data collection and structure solution, and bibliographic citations. The Worldwide Protein Data Bank (wwPDB) consists of organizations that act as deposition, data processing and distribution centers for PDB data. Members are: RCSB PDB (USA), PDBe (Europe) and PDBj (Japan), and BMRB (USA). The wwPDB's mission is to maintain a single PDB archive of macromolecular structural data that is freely and publicly available to the global community.
Born in Bradford is one of the biggest and most important medical research studies undertaken in the UK. The project started in 2007 and is looking to answer questions about our health by tracking the lives of 13,500 babies and their families and will provide information for studies across the UK and around the world. The aim of Born in Bradford is to find out more about the causes of childhood illness by studying children from all cultures and backgrounds as their lives unfold.