Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 64 result(s)
Country
A collection of high quality multiple sequence alignments for objective, comparative studies of alignment algorithms. The alignments are constructed based on 3D structure superposition and manually refined to ensure alignment of important functional residues. A number of subsets are defined covering many of the most important problems encountered when aligning real sets of proteins. It is specifically designed to serve as an evaluation resource to address all the problems encountered when aligning complete sequences. The first release provided sets of reference alignments dealing with the problems of high variability, unequal repartition and large N/C-terminal extensions and internal insertions. Version 2.0 of the database incorporates three new reference sets of alignments containing structural repeats, trans-membrane sequences and circular permutations to evaluate the accuracy of detection/prediction and alignment of these complex sequences. Within the resource, users can look at a list of all the alignments, download the whole database by ftp, get the "c" program to compare a test alignment with the BAliBASE reference (The source code for the program is freely available), or look at the results of a comparison study of several multiple alignment programs, using BAliBASE reference sets.
OrthoMCL is a genome-scale algorithm for grouping orthologous protein sequences. It provides not only groups shared by two or more species/genomes, but also groups representing species-specific gene expansion families. So it serves as an important utility for automated eukaryotic genome annotation. OrthoMCL starts with reciprocal best hits within each genome as potential in-paralog/recent paralog pairs and reciprocal best hits across any two genomes as potential ortholog pairs. Related proteins are interlinked in a similarity graph. Then MCL (Markov Clustering algorithm,Van Dongen 2000; www.micans.org/mcl) is invoked to split mega-clusters. This process is analogous to the manual review in COG construction. MCL clustering is based on weights between each pair of proteins, so to correct for differences in evolutionary distance the weights are normalized before running MCL.
<<<!!!<<< Effective May 2024, NCBI's Assembly resource will no longer be available. NCBI Assembly data can now be found on the NCBI Datasets genome pages. https://www.re3data.org/repository/r3d100014298 >>>!!!>>> A database providing information on the structure of assembled genomes, assembly names and other meta-data, statistical reports, and links to genomic sequence data.
As with most biomedical databases, the first step is to identify relevant data from the research community. The Monarch Initiative is focused primarily on phenotype-related resources. We bring in data associated with those phenotypes so that our users can begin to make connections among other biological entities of interest. We import data from a variety of data sources. With many resources integrated into a single database, we can join across the various data sources to produce integrated views. We have started with the big players including ClinVar and OMIM, but are equally interested in boutique databases. You can learn more about the sources of data that populate our system from our data sources page https://monarchinitiative.org/about/sources.
ClinVar is a freely accessible, public archive of reports of the relationships among human variations and phenotypes, with supporting evidence. ClinVar thus facilitates access to and communication about the relationships asserted between human variation and observed health status, and the history of that interpretation. ClinVar processes submissions reporting variants found in patient samples, assertions made regarding their clinical significance, information about the submitter, and other supporting data. The alleles described in submissions are mapped to reference sequences, and reported according to the HGVS standard. ClinVar then presents the data for interactive users as well as those wishing to use ClinVar in daily workflows and other local applications. ClinVar works in collaboration with interested organizations to meet the needs of the medical genetics community as efficiently and effectively as possible
AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals’ transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated.
CorrDB has data of cattle, relating to meat production, milk production, growth, health, and others. This database is designed to collect all published livestock genetic/phenotypic trait correlation data, aimed at facilitating genetic network analysis or systems biology studies.
Country
<<<!!!<<< This repository is no longer available. >>>!!!>>> Message since 2018-06: This virtual host is being reconstructed.
Country
BioGrid Australia Limited operates a federated data sharing platform for collaborative translational health and medical research providing a secure infrastructure that advances health research by linking privacy-protected and ethically approved data among a wide network of health collaborators. BioGrid links real-time de-identified health data across institutions, jurisdictions and diseases to assist researchers and clinicians improve their research and clinical outcomes. The web-based infrastructure provides ethical access while protecting both privacy and intellectual property.
Country
The Canadian Open Genetics Repository is a collaborative effort for the collection, storage, sharing and robust analysis of variants reported by medical diagnostics laboratories across Canada. As clinical laboratories adopt modern genomics technologies, the need for this type of collaborative framework is increasingly important. If you want to join COGR project and get data please send an email at cogr@opengenetics.ca and the introduction to the project will be arranged.
Country
TopFIND is a protein-centric database for the annotation of protein termini currently in its third version. Non-canonical protein termini can be the result of multiple different biological processes, including pre-translational processes such as alternative splicing and alternative translation initiation or post-translational protein processing by proteases that cleave proteases as part of protein maturation or as a regulatory modification. Accordingly, protein termini evidence in TopFIND is inferred from other databases such as ENSEMBL transcripts, TISdb for alternative translation initiation, MEROPS for protein cleavage by proteases, and UniProt for canonical and protein isoform start sites.
Country
The Genome Warehouse (GWH) is a public repository housing genome-scale data for a wide range of species and delivering a series of web services for genome data submission, storage, release and sharing.
Country
Morph·D·Base has been developed to serve scientific research and education. It provides a platform for storing the detailed documentation of all material, methods, procedures, and concepts applied, together with the specific parameters, values, techniques, and instruments used during morphological data production. In other words, it's purpose is to provide a publicly available resource for recording and documenting morphological metadata. Moreover, it is also a repository for different types of media files that can be uploaded in order to serve as support and empirical substantiation of the results of morphological investigations. Our long-term perspective with Morph·D·Base is to provide an instrument that will enable a highly formalized and standardized way of generating morphological descriptions using a morphological ontology that will be based on the web ontology language (OWL - http://www.w3.org/TR/owl-features/). This, however, represents a project that is still in development.
dictyBase is an integrated genetic and literature database that contains published Dictyostelium discoideum literature, genes, expressed sequence tags (ESTs), as well as the chromosomal and mitochondrial genome sequences. Direct access to the genome browser, a Blast search tool, the Dictyostelium Stock Center, research tools, colleague databases, and much much more are just a mouse click away. Dictybase is a genome portal for the Amoebozoa. dictyBase is funded by a grant from the National Institute for General Medical Sciences.
<<<!!!<<< Effective May 2024, NCBI's Genome resource will no longer be available. NCBI Genome data can now be found on the NCBI Datasets taxonomy pages. https://www.re3data.org/repository/r3d100014298 >>>!!!>>> The Genome database contains annotations and analysis of eukaryotic and prokaryotic genomes, as well as tools that allow users to compare genomes and gene sequences from humans, microbes, plants, viruses and organelles. Users can browse by organism, and view genome maps and protein clusters.
Country
ProteomicsDB started as a protein-centric in-memory database for the exploration of large collections of quantitative mass spectrometry-based proteomics data. The data types and contents grew over time to include RNA-Seq expression data, drug-target interactions and cell line viability data.
Country
Thousands of circular RNAs (circRNAs) have recently been shown to be expressed in eukaryotic cells [Salzman et al. 2012, Jeck et al. 2013, Memczak et al. 2013, Salzman et al. 2013]. Here you can explore public circRNA datasets and download the custom python scripts needed to discover circRNAs in your own (ribominus) RNA-seq data.
The NCBI Short Genetic Variations database, commonly known as dbSNP, catalogs short variations in nucleotide sequences from a wide range of organisms. These variations include single nucleotide variations, short nucleotide insertions and deletions, short tandem repeats and microsatellites. Short Genetic Variations may be common, thus representing true polymorphisms, or they may be rare. Some rare human entries have additional information associated withthem, including disease associations, genotype information and allele origin, as some variations are somatic rather than germline events. ***NCBI will phase out support for non-human organism data in dbSNP and dbVar beginning on September 1, 2017***
ASAP (a systematic annotation package for community analysis of genomes) is a relational database and web interface developed to store, update and distribute genome sequence data and gene expression data collected by or in collaboration with researchers at the University of Wisconsin - Madison. ASAP was designed to facilitate ongoing community annotation of genomes and to grow with genome projects as they move from the preliminary data stage through post-sequencing functional analysis. The ASAP database includes multiple genome sequences at various stages of analysis, and gene expression data from preliminary experiments.
The HomoloGene database provides a system for the automated detection of homologs among annotated genes of genomes across multiple species. These homologs are fully documented and organized by homology group. HomoloGene processing uses proteins from input organisms to compare and sequence homologs, mapping back to corresponding DNA sequences.