Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 74 result(s)
GeneCards is a searchable, integrative database that provides comprehensive, user-friendly information on all annotated and predicted human genes. It automatically integrates gene-centric data from ~125 web sources, including genomic, transcriptomic, proteomic, genetic, clinical and functional information.
mentha archives evidence collected from different sources and presents these data in a complete and comprehensive way. Its data comes from manually curated protein-protein interaction databases that have adhered to the IMEx consortium. The aggregated data forms an interactome which includes many organisms. mentha is a resource that offers a series of tools to analyse selected proteins in the context of a network of interactions. Protein interaction databases archive protein-protein interaction (PPI) information from published articles. However, no database alone has sufficient literature coverage to offer a complete resource to investigate "the interactome". mentha's approach generates every week a consistent interactome (graph). Most importantly, the procedure assigns to each interaction a reliability score that takes into account all the supporting evidence. mentha offers eight interactomes (Homo sapiens, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Escherichia coli K12, Mus musculus, Rattus norvegicus, Saccharomyces cerevisiae) plus a global network that comprises every organism, including those not mentioned. The website and the graphical application are designed to make the data stored in mentha accessible and analysable to all users. Source databases are: MINT, IntAct, DIP, MatrixDB and BioGRID.
GOLD is currently the largest repository for genome project information world-wide. The accurate and efficient genome project tracking is a vital criterion for launching new genome sequencing projects, and for avoiding significant overlap between various sequencing efforts and centers.
Country
MTD is focused on mammalian transcriptomes with a current version that contains data from humans, mice, rats and pigs. Regarding the core features, the MTD browses genes based on their neighboring genomic coordinates or joint KEGG pathway and provides expression information on exons, transcripts, and genes by integrating them into a genome browser. We developed a novel nomenclature for each transcript that considers its genomic position and transcriptional features.
Country
SILVA is a comprehensive, quality-controlled web resource for up-to-date aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains alongside supplementary online services. In addition to data products, SILVA provides various online tools such as alignment and classification, phylogenetic tree calculation and viewer, probe/primer matching, and an amplicon analysis pipeline. With every full release a curated guide tree is provided that contains the latest taxonomy and nomenclature based on multiple references. SILVA is an ELIXIR Core Data Resource.
The Drosophila Synthetic Population Resource (DSPR) consists of a new panel of over 1700 recombinant inbred lines (RILs) of Drosophila melanogaster, derived from two highly recombined synthetic populations, each created by intercrossing a different set of 8 inbred founder lines (with one founder line common to both populations). Complete genome sequence data for the founder lines are available, and in addition, there is a high resolution genetic map for each RIL. The DSPR has been developed as a community resource for high-resolution QTL mapping and is intended to be used widely by the Drosophila community.
OrtholugeDB contains Ortholuge-based orthology predictions for completely sequenced bacterial and archaeal genomes. It is also a resource for reciprocal best BLAST-based ortholog predictions, in-paralog predictions (recently duplicated genes) and ortholog groups in Bacteria and Archaea. The Ortholuge method improves the specificity of high-throughput orthology prediction.
Country
NONCODE is an integrated knowledge database dedicated to non-coding RNAs (excluding tRNAs and rRNAs). Now, there are 16 species in NONCODE(human, mouse, cow, rat, chicken, fruitfly, zebrafish, celegans, yeast, Arabidopsis, chimpanzee, gorilla, orangutan, rhesus macaque, opossum and platypus).The source of NONCODE includes literature and other public databases. We searched PubMed using key words ‘ncrna’, ‘noncoding’, ‘non-coding’,‘no code’, ‘non-code’, ‘lncrna’ or ‘lincrna. We retrieved the new identified lncRNAs and their annotation from the Supplementary Material or web site of these articles. Together with the newest data from Ensembl , RefSeq, lncRNAdb and GENCODE were processed through a standard pipeline for each species.
<<<!!!<<< the repository is offline >>>!!!>>> GOBASE is a taxonomically broad organelle genome database that organizes and integrates diverse data related to mitochondria and chloroplasts. GOBASE is currently expanding to include information on representative bacteria that are thought to be specifically related to the bacterial ancestors of mitochondria and chloroplasts
Clinical Genomic Database (CGD) is a manually curated database of conditions with known genetic causes, focusing on medically significant genetic data with available interventions.
Country
During cell cycle, numerous proteins temporally and spatially localized in distinct sub-cellular regions including centrosome (spindle pole in budding yeast), kinetochore/centromere, cleavage furrow/midbody (related or homolog structures in plants and budding yeast called as phragmoplast and bud neck, respectively), telomere and spindle spatially and temporally. These sub-cellular regions play important roles in various biological processes. In this work, we have collected all proteins identified to be localized on kinetochore, centrosome, midbody, telomere and spindle from two fungi (S. cerevisiae and S. pombe) and five animals, including C. elegans, D. melanogaster, X. laevis, M. musculus and H. sapiens based on the rationale of "Seeing is believing" (Bloom K et al., 2005). Through ortholog searches, the proteins potentially localized at these sub-cellular regions were detected in 144 eukaryotes. Then the integrated and searchable database MiCroKiTS - Midbody, Centrosome, Kinetochore, Telomere and Spindle has been established.
<<<!!!<<< OFFLINE >>>!!!>>> A recent computer security audit has revealed security flaws in the legacy HapMap site that require NCBI to take it down immediately. We regret the inconvenience, but we are required to do this. That said, NCBI was planning to decommission this site in the near future anyway (although not quite so suddenly), as the 1,000 genomes (1KG) project has established itself as a research standard for population genetics and genomics. NCBI has observed a decline in usage of the HapMap dataset and website with its available resources over the past five years and it has come to the end of its useful life. The International HapMap Project is a multi-country effort to identify and catalog genetic similarities and differences in human beings. Using the information in the HapMap, researchers will be able to find genes that affect health, disease, and individual responses to medications and environmental factors. The Project is a collaboration among scientists and funding agencies from Japan, the United Kingdom, Canada, China, Nigeria, and the United States. All of the information generated by the Project will be released into the public domain. The goal of the International HapMap Project is to compare the genetic sequences of different individuals to identify chromosomal regions where genetic variants are shared. By making this information freely available, the Project will help biomedical researchers find genes involved in disease and responses to therapeutic drugs. In the initial phase of the Project, genetic data are being gathered from four populations with African, Asian, and European ancestry. Ongoing interactions with members of these populations are addressing potential ethical issues and providing valuable experience in conducting research with identified populations. Public and private organizations in six countries are participating in the International HapMap Project. Data generated by the Project can be downloaded with minimal constraints. The Project officially started with a meeting in October 2002 (https://www.genome.gov/10005336/) and is expected to take about three years.
Content type(s)
Genome resource samples of wild animals, particularly those of endangered mammalian and avian species, are very difficult to collect. In Korea, many of these animals such as tigers, leopards, bears, wolves, foxes, gorals, and river otters, are either already extinct, long before the Korean biologists had the opportunity to study them, or are near extinction. Therefore, proposal for a systematic collection and preservation of genetic samples of these precious animals was adopted by Korea Science & Engineering Foundation (KOSEF). As an outcome, Conservation Genome Resource Bank for Korean Wildlife (CGRB; www.cgrb.org) was established in 2002 at the College of Veterinary Medicine, Seoul National University as one of the Special Research Materials Bank supported by the Scientific and Research Infrastructure Building Program of KOSEF. CGRB operates in collaboration with Seoul Grand Park Zoo managed by Seoul Metropolitan Government, and has offices and laboratories at both Seoul National University and Seoul Grand Park, where duplicate samples are maintained, thereby assuring a long-term, safe preservation of the samples. Thus, CGRB is the first example of the collaborative scientific infrastructure program between university and zoo in Korea.
Country
ConsensusPathDB integrates interaction networks in humans (and in the model organisms - yeast and mouse) including binary and complex protein-protein, genetic, metabolic, signaling, gene regulatory and drug-target interactions, as well as biochemical pathways. Data originate from public resources for interactions and interactions curated from the literature. The interaction data are integrated in a complementary manner to avoid redundancies.
<<<!!!<<< Efforts to obtain renewed funding after 2008 were unfortunately not successful. PANDIT has therefore been frozen since November 2008, and its data are not updated since September 2005 when version 17.0 was released (corresponding to Pfam 17.0). The existing data and website remain available from these pages, and should remain stable and, we hope, useful. >>>!!!>>> PANDIT is a collection of multiple sequence alignments and phylogenetic trees. It contains corresponding amino acid and nucleotide sequence alignments, with trees inferred from each alignment. PANDIT is based on the Pfam database (Protein families database of alignments and HMMs), and includes the seed amino acid alignments of most families in the Pfam-A database. DNA sequences for as many members of each family as possible are extracted from the EMBL Nucleotide Sequence Database and aligned according to the amino acid alignment. PANDIT also contains a further copy of the amino acid alignments, restricted to the sequences for which DNA sequences were found.
Country
<<<!!!<<< 2019-12-23: the repository is offline >>>!!!>>> Introduction of genome-scale metabolic network: The completion of genome sequencing and subsequent functional annotation for a great number of species enables the reconstruction of genome-scale metabolic networks. These networks, together with in silico network analysis methods such as the constraint based methods (CBM) and graph theory methods, can provide us systems level understanding of cellular metabolism. Further more, they can be applied to many predictions of real biological application such as: gene essentiality analysis, drug target discovery and metabolic engineering
Country
CORUM is a manually curated dataset of mammalian protein complexes. Annotation of protein complexes includes protein complex composition and other valuable information such as method of purification, cellular function of complexes or involvement in diseases.
Content type(s)
Country
The EuMMCR (European Mouse Mutant cell Repository) is the mouse ES cell distribution unit in Europe. The EuMMCR unit distributes targeting vectors and mutant ES cell lines produced in the EUCOMM and EUCOMMTOOLS consortia.
<<<!!!<<<Noticed 26.08.2020: The NCI CBIIT instance of the CGAP no longer exist on this website. The Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer has a new home at the NCI-funded Institute for Systems Biology Cancer Genomics Cloud available at the following location: https://mitelmandatabase.isb-cgc.org>>>!!!>>>
The Conserved Domain Database is a resource for the annotation of functional units in proteins. Its collection of domain models includes a set curated by NCBI, which utilizes 3D structure to provide insights into sequence/structure/function relationships
The Human Ageing Genomic Resources (HAGR) is a collection of databases and tools designed to help researchers study the genetics of human ageing using modern approaches such as functional genomics, network analyses, systems biology and evolutionary analyses.
The CPTAC Data Portal is the centralized repository for the dissemination of proteomic data collected by the Proteome Characterization Centers (PCCs) for the CPTAC program. The portal also hosts analyses of the mass spectrometry data (mapping of spectra to peptide sequences and protein identification) from the PCCs and from a CPTAC-sponsored common data analysis pipeline (CDAP).