Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 33 result(s)
DEPOD - the human DEPhOsphorylation Database (version 1.1) is a manually curated database collecting human active phosphatases, their experimentally verified protein and non-protein substrates and dephosphorylation site information, and pathways in which they are involved. It also provides links to popular kinase databases and protein-protein interaction databases for these phosphatases and substrates. DEPOD aims to be a valuable resource for studying human phosphatases and their substrate specificities and molecular mechanisms; phosphatase-targeted drug discovery and development; connecting phosphatases with kinases through their common substrates; completing the human phosphorylation/dephosphorylation network.
InterPro collects information about protein sequence analysis and classification, providing access to a database of predictive protein signatures used for the classification and automatic annotation of proteins and genomes. Sequences in InterPro are classified at superfamily, family, and subfamily. InterPro predicts the occurrence of functional domains, repeats, and important sites, and adds in-depth annotation such as GO terms to the protein signatures.
<<<!!!<<< Efforts to obtain renewed funding after 2008 were unfortunately not successful. PANDIT has therefore been frozen since November 2008, and its data are not updated since September 2005 when version 17.0 was released (corresponding to Pfam 17.0). The existing data and website remain available from these pages, and should remain stable and, we hope, useful. >>>!!!>>> PANDIT is a collection of multiple sequence alignments and phylogenetic trees. It contains corresponding amino acid and nucleotide sequence alignments, with trees inferred from each alignment. PANDIT is based on the Pfam database (Protein families database of alignments and HMMs), and includes the seed amino acid alignments of most families in the Pfam-A database. DNA sequences for as many members of each family as possible are extracted from the EMBL Nucleotide Sequence Database and aligned according to the amino acid alignment. PANDIT also contains a further copy of the amino acid alignments, restricted to the sequences for which DNA sequences were found.
The Ensembl project produces genome databases for vertebrates and other eukaryotic species. Ensembl is a joint project between the European Bioinformatics Institute (EBI) and the Wellcome Trust Sanger Institute (WTSI) to develop a software system that produces and maintains automatic annotation on selected genomes.The Ensembl project was started in 1999, some years before the draft human genome was completed. Even at that early stage it was clear that manual annotation of 3 billion base pairs of sequence would not be able to offer researchers timely access to the latest data. The goal of Ensembl was therefore to automatically annotate the genome, integrate this annotation with other available biological data and make all this publicly available via the web. Since the website's launch in July 2000, many more genomes have been added to Ensembl and the range of available data has also expanded to include comparative genomics, variation and regulatory data. Ensembl is a joint project between European Bioinformatics Institute (EBI), an outstation of the European Molecular Biology Laboratory (EMBL), and the Wellcome Trust Sanger Institute (WTSI). Both institutes are located on the Wellcome Trust Genome Campus in Hinxton, south of the city of Cambridge, United Kingdom.
Content type(s)
BioSamples stores and supplies descriptions and metadata about biological samples used in research and development by academia and industry. Samples are either 'reference' samples (e.g. from 1000 Genomes, HipSci, FAANG) or have been used in an assay database such as the European Nucleotide Archive (ENA) or ArrayExpress.
caNanoLab is a data sharing portal designed to facilitate information sharing in the biomedical nanotechnology research community to expedite and validate the use of nanotechnology in biomedicine. caNanoLab provides support for the annotation of nanomaterials with characterizations resulting from physico-chemical and in vitro assays and the sharing of these characterizations and associated nanotechnology protocols in a secure fashion.
MGnify (formerly: EBI Metagenomics) offers an automated pipeline for the analysis and archiving of microbiome data to help determine the taxonomic diversity and functional & metabolic potential of environmental samples. Users can submit their own data for analysis or freely browse all of the analysed public datasets held within the repository. In addition, users can request analysis of any appropriate dataset within the European Nucleotide Archive (ENA). User-submitted or ENA-derived datasets can also be assembled on request, prior to analysis.
REFOLD has merged to REFOLDdb. REFOLDdb is a unique database for the life sciences research community, providing annotated information for designing new refolding protocols and customizing existing methodologies. We envisage that this resource will find wide utility across broad disciplines that rely on the production of pure, active, recombinant proteins. Furthermore, the database also provides a useful overview of the recent trends and statistics in refolding technology development.We based our resource on the existing REFOLD database, which has not been updated since 2009. We redesigned the data format to be more concise, allowing consistent representations among data entries compared with the original REFOLD database. The remodeled data architecture enhances the search efficiency and improves the sustainability of the database. After an exhaustive literature search we added experimental refolding protocols from reports published 2009 to early 2017. In addition to this new data, we fully converted and integrated existing REFOLD data into our new resource.
The Database explores the interactions of chemicals and proteins. It integrates information about interactions from metabolic pathways, crystal structures, binding experiments and drug-target relationships. Inferred information from phenotypic effects, text mining and chemical structure similarity is used to predict relations between chemicals. STITCH further allows exploring the network of chemical relations, also in the context of associated binding proteins.
The NCBI database of Genotypes and Phenotypes archives and distributes the results of studies that have investigated the interaction of genotype and phenotype, including genome-wide association studies, medical sequencing, molecular diagnostic assays, and association between genotype and non-clinical traits. The database provides summaries of studies, the contents of measured variables, and original study document text. dbGaP provides two types of access for users, open and controlled. Through the controlled access, users may access individual-level data such as phenotypic data tables and genotypes.
Project Achilles is a systematic effort aimed at identifying and cataloging genetic vulnerabilities across hundreds of genomically characterized cancer cell lines. The project uses genome-wide genetic perturbation reagents (shRNAs or Cas9/sgRNAs) to silence or knock-out individual genes and identify those genes that affect cell survival. Large-scale functional screening of cancer cell lines provides a complementary approach to those studies that aim to characterize the molecular alterations (e.g. mutations, copy number alterations) of primary tumors, such as The Cancer Genome Atlas (TCGA). The overall goal of the project is to identify cancer genetic dependencies and link them to molecular characteristics in order to prioritize targets for therapeutic development and identify the patient population that might benefit from such targets. Project Achilles data is hosted on the Cancer Dependency Map Portal (DepMap) where it has been harmonized with our genomics and cellular models data. You can access the latest and all past datasets here: https://depmap.org/portal/download/all/
The UniPROBE (Universal PBM Resource for Oligonucleotide Binding Evaluation) database hosts data generated by universal protein binding microarray (PBM) technology on the in vitro DNA binding specificities of proteins. This initial release of the UniPROBE database provides a centralized resource for accessing comprehensive data on the preferences of proteins for all possible sequence variants ('words') of length k ('k-mers'), as well as position weight matrix (PWM) and graphical sequence logo representations of the k-mer data. In total, the database currently hosts DNA binding data for 406 nonredundant proteins from a diverse collection of organisms, including the prokaryote Vibrio harveyi, the eukaryotic malarial parasite Plasmodium falciparum, the parasitic Apicomplexan Cryptosporidium parvum, the yeast Saccharomyces cerevisiae, the worm Caenorhabditis elegans, mouse, and human. The database's web tools (on the right) include a text-based search, a function for assessing motif similarity between user-entered data and database PWMs, and a function for locating putative binding sites along user-entered nucleotide sequences
HPIDB is a public resource, which integrates experimental PPIs from various databases into a single database. The Host-Pathogen Interaction Database (HPIDB) is a genomics resource devoted to understanding molecular interactions between key organisms and the pathogens to which they are susceptible.
The UniProt Reference Clusters (UniRef) provide clustered sets of sequences from the UniProt Knowledgebase (including isoforms) and selected UniParc records in order to obtain complete coverage of the sequence space at several resolutions while hiding redundant sequences (but not their descriptions) from view.
The Electron Microscopy Data Bank (EMDB) is a public repository for electron microscopy density maps of macromolecular complexes and subcellular structures. It covers a variety of techniques, including single-particle analysis, electron tomography, and electron (2D) crystallography.
The Ensembl genome annotation system, developed jointly by the EBI and the Wellcome Trust Sanger Institute, has been used for the annotation, analysis and display of vertebrate genomes since 2000. Since 2009, the Ensembl site has been complemented by the creation of five new sites, for bacteria, protists, fungi, plants and invertebrate metazoa, enabling users to use a single collection of (interactive and programatic) interfaces for accessing and comparing genome-scale data from species of scientific interest from across the taxonomy. In each domain, we aim to bring the integrative power of Ensembl tools for comparative analysis, data mining and visualisation across genomes of scientific interest, working in collaboration with scientific communities to improve and deepen genome annotation and interpretation.