Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 52 result(s)
Country
GeneMANI helps you predict the function of your favourite genes and gene sets. GeneMania, a real-time multiple association network integration algorithm for predicting gene function.
<<<!!!<<< This repository is no longer available. >>>!!!>>> The sequencing of several bird genomes and the anticipated sequencing of many more provided the impetus to develop a model organism database devoted to the taxonomic class: Aves. Birds provide model organisms important to the study of neurobiology, immunology, genetics, development, oncology, virology, cardiovascular biology, evolution and a variety of other life sciences. Many bird species are also important to agriculture, providing an enormous worldwide food source worldwide. Genomic approaches are proving invaluable to studying traits that affect meat yield, disease resistance, behavior, and bone development along with many other factors affecting productivity. In this context, BirdBase will serve both biomedical and agricultural researchers.
Complete Genomics provides free public access to a variety of whole human genome data sets generated from Complete Genomics’ sequencing service. The research community can explore and familiarize themselves with the quality of these data sets, review the data formats provided from our sequencing service, and augment their own research with additional summaries of genomic variation across a panel of diverse individuals. The quality of these data sets is representative of what a customer can expect to receive for their own samples. This public genome repository comprises genome results from both our Standard Sequencing Service (69 standard, non-diseased samples) and the Cancer Sequencing Service (two matched tumor and normal sample pairs). In March 2013 Complete Genomics was acquired by BGI-Shenzhen , the world’s largest genomics services company. BGI is a company headquartered in Shenzhen, China that provides comprehensive sequencing and bioinformatics services for commercial science, medical, agricultural and environmental applications. Complete Genomics is now focused on building a new generation of high-throughput sequencing technology and developing new and exciting research, clinical and consumer applications.
<<<!!!<<< As of Aug. 15, 2019, we are suspending plasmid distribution from the collection. If you would like to request BioPlex ORF clones (Harper lab) or if you identify other clones in our collection for which you cannot find an alternative, please email us at plasmidhelp@hms.harvard.edu. >>>!!!>>>
Country
Primate Cell Type Database, a publicly available web-accessible archive of intracellular patch clamp recordings and highly detailed three-dimensional digital reconstructions of neuronal morphology.
JCVI is a world leader in genomic research. The Institute studies the societal implications of genomics in addition to genomics itself. The Institute's research involves genomic medicine; environmental genomic analysis; clean energy; synthetic biology; and ethics, law, and economics.
4DGenome is a public database that archives and disseminates chromatin interaction data. Currently, 4DGenome contains over 8,038,247 interactions curated from both experimental studies (high throughput and individual studies) and computational predictions. It covers five organisms, Homo sapiens, Mus musculus, Drosophila melanogaster, Plasmodium falciparum, and Saccharomyces cerevisiae.
Country
The National Stem Cell Resource Bank (formerly Beijing Stem Cell Bank) was established in 2007 and is a service platform approved by the Ministry of Science and Technology and the Ministry of Finance for the exchange of scientific and technological resources at the national level scientific and technological innovation base of basic supply and state guarantee.
With the creation of the Metabolomics Data Repository managed by Data Repository and Coordination Center (DRCC), the NIH acknowledges the importance of data sharing for metabolomics. Metabolomics represents the systematic study of low molecular weight molecules found in a biological sample, providing a "snapshot" of the current and actual state of the cell or organism at a specific point in time. Thus, the metabolome represents the functional activity of biological systems. As with other ‘omics’, metabolites are conserved across animals, plants and microbial species, facilitating the extrapolation of research findings in laboratory animals to humans. Common technologies for measuring the metabolome include mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), which can measure hundreds to thousands of unique chemical entities. Data sharing in metabolomics will include primary raw data and the biological and analytical meta-data necessary to interpret these data. Through cooperation between investigators, metabolomics laboratories and data coordinating centers, these data sets should provide a rich resource for the research community to enhance preclinical, clinical and translational research.
Country
<<<!!!<<< This repository is no longer available. HeRBi is now part of the European Zebrafish Resource Center https://www.re3data.org/repository/r3d100011105. Data from HeRBi: https://www.ezrc.kit.edu/search_menu.php >>>!!!>>>
BioGPS is a gene portal built with two guiding principles in mind -- customizability and extensibility. It is a complete resource for learning about gene and protein function. A free extensible and customizable gene annotation portal, a complete resource for learning about gene and protein function.
virus mentha archives evidence about viral interactions collected from different sources and presents these data in a complete and comprehensive way. Its data comes from manually curated protein-protein interaction databases that have adhered to the IMEx consortium. virus mentha is a resource that offers a series of tools to analyse selected proteins in the context of a network of interactions. Protein interaction databases archive protein-protein interaction (PPI) information from published articles. However, no database alone has sufficient literature coverage to offer a complete resource to investigate "the interactome". virus mentha's approach generates every week a consistent interactome (graph). Most importantly, the procedure assigns to each interaction a reliability score that takes into account all the supporting evidence. virus mentha offers direct access to viral families such as: Orthomyxoviridae, Orthoretrovirinae and Herpesviridae plus, it offers the unique possibility of searching by host organism. The website and the graphical application are designed to make the data stored in virus mentha accessible and analysable to all users.virus mentha superseeds VirusMINT. The Source databases are: MINT, DIP, IntAct, MatrixDB, BioGRID.
The miRBase database is a searchable database of published miRNA sequences and annotation. Each entry in the miRBase Sequence database represents a predicted hairpin portion of a miRNA transcript (termed mir in the database), with information on the location and sequence of the mature miRNA sequence (termed miR). Both hairpin and mature sequences are available for searching and browsing, and entries can also be retrieved by name, keyword, references and annotation. All sequence and annotation data are also available for download. The miRBase Registry provides miRNA gene hunters with unique names for novel miRNA genes prior to publication of results.
INTEGRALL is a web-based platform dedicated to compile information on integrons and designed to organize all the data available for these genetic structures. INTEGRALL provides a public genetic repository for sequence data and nomenclature and offers to scientists an easy and interactive access to integron's DNA sequences, their molecular arrangements as well as their genetic contexts.
Country
Androgen Receptor Gene Mutations Database is for all who are interested in mutations of the Androgen Receptor Gene. In light of the difficulty in getting new AR mutations published the curator will now accept new mutations that have not been published, provided that it is from a reputable research or clinical laboratory. The curator also strongly suggests that where possible, particularly in the case of new unique mutations that an attempt be made to at least confirm the pathogenicity of the putatative mutation, by showing that the mutation when transfected into a suitable expression system produces a mutant androgen receptor protein.
The Pseudomonas Genome Database collaborates with an international panel of expert Pseudomonas researchers to provide high quality updates to the PAO1 genome annotation and make cutting edge genome analysis data available.
GeneLab is an interactive, open-access resource where scientists can upload, download, store, search, share, transfer, and analyze omics data from spaceflight and corresponding analogue experiments. Users can explore GeneLab datasets in the Data Repository, analyze data using the Analysis Platform, and create collaborative projects using the Collaborative Workspace. GeneLab promises to facilitate and improve information sharing, foster innovation, and increase the pace of scientific discovery from extremely rare and valuable space biology experiments. Discoveries made using GeneLab have begun and will continue to deepen our understanding of biology, advance the field of genomics, and help to discover cures for diseases, create better diagnostic tools, and ultimately allow astronauts to better withstand the rigors of long-duration spaceflight. GeneLab helps scientists understand how the fundamental building blocks of life itself – DNA, RNA, proteins, and metabolites – change from exposure to microgravity, radiation, and other aspects of the space environment. GeneLab does so by providing fully coordinated epigenomics, genomics, transcriptomics, proteomics, and metabolomics data alongside essential metadata describing each spaceflight and space-relevant experiment. By carefully curating and implementing best practices for data standards, users can combine individual GeneLab datasets to gain new, comprehensive insights about the effects of spaceflight on biology. In this way, GeneLab extends the scientific knowledge gained from each biological experiment conducted in space, allowing scientists from around the world to make novel discoveries and develop new hypotheses from these priceless data.
I2D (Interologous Interaction Database) is an on-line database of known and predicted mammalian and eukaryotic protein-protein interactions. It has been built by mapping high-throughput (HTP) data between species. Thus, until experimentally verified, these interactions should be considered "predictions". It remains one of the most comprehensive sources of known and predicted eukaryotic PPI. I2D includes data for S. cerevisiae, C. elegans, D. melonogaster, R. norvegicus, M. musculus, and H. sapiens.
The European Mouse Mutant Archive – EMMA is a non-profit repository for the collection, archiving (via cryopreservation) and distribution of relevant mutant mouse strains essential for basic biomedical research. The laboratory mouse is the most important mammalian model for studying genetic and multi-factorial diseases in man. The comprehensive physical and data resources of EMMA support basic biomedical and preclinical research, and the available research tools and mouse models of human disease offer the opportunity to develop a better understanding of molecular disease mechanisms and may provide the foundation for the development of diagnostic, prognostic and therapeutic strategies.
The project aims to examine and index the genomic diversity through the generation of complete mitochondrial and nuclear genome sequences of sharks and rays of the Pacific Rim. There is a huge diversity of elasmobranch fishes in this region, but many species are under threat because of poor management and conservation measures in many countries. It is absolutely critical that species’ identities are correct for conservation and fisheries management purposes. This project will provide this clarity of identity for both charismatic and commercially important species through the inclusion of ‘genetypes’ (ie., BioVouchers) and the application of genetic tools that utilize whole mitochondrial and nuclear genome sequences.