Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 53 result(s)
AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals’ transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated.
AmeriFlux is a network of PI-managed sites measuring ecosystem CO2, water, and energy fluxes in North, Central and South America. It was established to connect research on field sites representing major climate and ecological biomes, including tundra, grasslands, savanna, crops, and conifer, deciduous, and tropical forests. As a grassroots, investigator-driven network, the AmeriFlux community has tailored instrumentation to suit each unique ecosystem. This “coalition of the willing” is diverse in its interests, use of technologies and collaborative approaches. As a result, the AmeriFlux Network continually pioneers new ground.
<<<!!!<<< This repository is no longer available. >>>!!!>>> In 2016, NSIDC partnered with the United States Antarctic Program - Data Center (USAP-DC) at Columbia University to consolidate NSF glaciology data into a central USAP Project Catalog and a Data Repository for research datasets derived from these projects. From 2016 to 2018, the AGDC data sets were transferred to USAP-DC. All AGDC data previously archived with NSIDC are now available via the USAP-DC https://www.re3data.org/repository/r3d100010660.
ArrayExpress is one of the major international repositories for high-throughput functional genomics data from both microarray and high-throughput sequencing studies, many of which are supported by peer-reviewed publications. Data sets are submitted directly to ArrayExpress and curated by a team of specialist biological curators. In the past (until 2018) datasets from the NCBI Gene Expression Omnibus database were imported on a weekly basis. Data is collected to MIAME and MINSEQE standards.
The Bacterial and Viral Bioinformatics Resource Center (BV-BRC) is an information system designed to support research on bacterial and viral infectious diseases. BV-BRC combines two long-running BRCs: PATRIC, the bacterial system, and IRD/ViPR, the viral systems.
Brain Image Library (BIL) is an NIH-funded public resource serving the neuroscience community by providing a persistent centralized repository for brain microscopy data. Data scope of the BIL archive includes whole brain microscopy image datasets and their accompanying secondary data such as neuron morphologies, targeted microscope-enabled experiments including connectivity between cells and spatial transcriptomics, and other historical collections of value to the community. The BIL Analysis Ecosystem provides an integrated computational and visualization system to explore, visualize, and access BIL data without having to download it.
The CancerData site is an effort of the Medical Informatics and Knowledge Engineering team (MIKE for short) of Maastro Clinic, Maastricht, The Netherlands. Our activities in the field of medical image analysis and data modelling are visible in a number of projects we are running. CancerData is offering several datasets. They are grouped in collections and can be public or private. You can search for public datasets in the NBIA (National Biomedical Imaging Archive) image archives without logging in.
Country
The CDC Data Catalogue describes the Climate Data of the DWD and provides access to data, descriptions and access methods. Climate Data refers to observations, statistical indices and spatial analyses. CDC comprises Climate Data for Germany, but also global Climate Data, which were collected and processed in the framework of international co-operation. The CDC Data Catalogue is under construction and not yet complete. The purposes of the CDC Data Catalogue are: to provide uniform access to climate data centres and climate datasets of the DWD to describe the climate data according to international metadata standards to make the catalogue information available on the Internet to support the search for climate data to facilitate the access to climate data and climate data descriptions
The Cellular Phenotype database stores data derived from high-throughput phenotypic studies and it is being developed as part of the Systems Microscopy Network of Excellence project. The aim of the Cellular Phenotype database is to provide easy access to phenotypic data and facilitate the integration of independent phenotypic studies. Through its interface, users can search for a gene of interest, or a collection of genes, and retrieve the loss-of-function phenotypes observed, in human cells, by suppressing the expression of the selected gene(s), through RNA interference (RNAi), across independent phenotypic studies. Similarly, users can search for a phenotype of interest and retrieve the RNAi reagents that have caused such phenotype and the associated target genes. Information about specific RNAi reagents can also be obtained when searching for a reagent ID.
The objective of this database is to stimulate the exchange of information and the collaboration between researchers within the ChArMEx community. However, this community is not exclusive and researchers not directly involved in ChArMEx, but who wish to contribute to the achievements of ChArMEx scientific and/or educational goals are welcome to join-in. The database is a depository for all the data collected during the various projects that contribute to ChArMEx coordinated program. It aims at documenting, storing and distributing the data produced or used by the project community. However, it is also intended to host datasets that were produced outside the ChArMEx program but which are meaningful to ChArMEx scientific and/or educational goals. Any data owner who wishes to add or link his dataset to ChArMEx database is welcome to contact the database manager in order to get help and support. The ChArMEx database includes past and recent geophysical in situ observations, satellite products and model outputs. The database organizes the data management and provides data services to end-users of ChArMEx data. The database system provides a detailed description of the products and uses standardized formats whenever it is possible. It defines the access rules to the data and details the mutual rights and obligations of data providers and users (see ChArMEx data and publication policy). The database is being developed jointly by : SEDOO, OMP Toulouse , ICARE, Lille and ESPRI, IPSL Paris
Chemical Entities of Biological Interest (ChEBI) is a freely available dictionary of 'small molecular entities'. The term 'molecular entity' encompasses any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer, etc., identifiable as a separately distinguishable entity. The molecular entities in question are either products of nature or synthetic products used to intervene in the processes of living organisms (either deliberately, as for drugs, or unintentionally', as for chemicals in the environment). The qualifier 'small' implies the exclusion of entities directly encoded by the genome, and thus as a rule nucleic acids, proteins and peptides derived from proteins by cleavage are not included.
Polish CLARIN node – CLARIN-PL Language Technology Centre – is being built at Wrocław University of Technology. The LTC is addressed to scholars in the humanities and social sciences. Registered users are granted free access to digital language resources and advanced tools to explore them. They can also archive and share their own language data (in written, spoken, video or multimodal form).
<<<!!!<<< Phasing out support for the Database of Genomic Variants archive (DGVa). The submission, archiving, and presentation of structural variation services offered by the DGVa is transitioning to the European Variation Archive (EVA) https://www.re3data.org/repository/r3d100011553. All of the data shown in the DGVa website is already searchable and browsable from the EVA Study Browser. Submission of structural variation data to EVA is done using the VCF format. The VCF specification allows representing multiple types of structural variants such as insertions, deletions, duplications and copy-number variants. Other features such as symbolic alleles, breakends, confidence intervals etc., support more complex events, such as translocations at an imprecise position. >>>!!!>>>
The Department of Energy (DOE) Joint Genome Institute (JGI) is a national user facility with massive-scale DNA sequencing and analysis capabilities dedicated to advancing genomics for bioenergy and environmental applications. Beyond generating tens of trillions of DNA bases annually, the Institute develops and maintains data management systems and specialized analytical capabilities to manage and interpret complex genomic data sets, and to enable an expanding community of users around the world to analyze these data in different contexts over the web. The JGI Genome Portal provides a unified access point to all JGI genomic databases and analytical tools. A user can find all DOE JGI sequencing projects and their status, search for and download assemblies and annotations of sequenced genomes, and interactively explore those genomes and compare them with other sequenced microbes, fungi, plants or metagenomes using specialized systems tailored to each particular class of organisms. Databases: Genome Online Database (GOLD), Integrated Microbial Genomes (IGM), MycoCosm, Phytozome
The Electron Microscopy Data Bank (EMDB) is a public repository for electron microscopy density maps of macromolecular complexes and subcellular structures. It covers a variety of techniques, including single-particle analysis, electron tomography, and electron (2D) crystallography.
The Ensembl project produces genome databases for vertebrates and other eukaryotic species. Ensembl is a joint project between the European Bioinformatics Institute (EBI) and the Wellcome Trust Sanger Institute (WTSI) to develop a software system that produces and maintains automatic annotation on selected genomes.The Ensembl project was started in 1999, some years before the draft human genome was completed. Even at that early stage it was clear that manual annotation of 3 billion base pairs of sequence would not be able to offer researchers timely access to the latest data. The goal of Ensembl was therefore to automatically annotate the genome, integrate this annotation with other available biological data and make all this publicly available via the web. Since the website's launch in July 2000, many more genomes have been added to Ensembl and the range of available data has also expanded to include comparative genomics, variation and regulatory data. Ensembl is a joint project between European Bioinformatics Institute (EBI), an outstation of the European Molecular Biology Laboratory (EMBL), and the Wellcome Trust Sanger Institute (WTSI). Both institutes are located on the Wellcome Trust Genome Campus in Hinxton, south of the city of Cambridge, United Kingdom.
This site provides access to complete, annotated genomes from bacteria and archaea (present in the European Nucleotide Archive) through the Ensembl graphical user interface (genome browser). Ensembl Bacteria contains genomes from annotated INSDC records that are loaded into Ensembl multi-species databases, using the INSDC annotation import pipeline.
The Ensembl genome annotation system, developed jointly by the EBI and the Wellcome Trust Sanger Institute, has been used for the annotation, analysis and display of vertebrate genomes since 2000. Since 2009, the Ensembl site has been complemented by the creation of five new sites, for bacteria, protists, fungi, plants and invertebrate metazoa, enabling users to use a single collection of (interactive and programatic) interfaces for accessing and comparing genome-scale data from species of scientific interest from across the taxonomy. In each domain, we aim to bring the integrative power of Ensembl tools for comparative analysis, data mining and visualisation across genomes of scientific interest, working in collaboration with scientific communities to improve and deepen genome annotation and interpretation.
EnsemblPlants is a genome-centric portal for plant species. Ensembl Plants is developed in coordination with other plant genomics and bioinformatics groups via the EBI's role in the transPLANT consortium.
The EPN (or EUREF Permanent Network) is a voluntary organization of several European agencies and universities that pool resources and permanent GNSS station data to generate precise GNSS products. The EPN has been created under the umbrella of the International Association Geodesy and more precisely by its sub-commission EUREF. The European Terrestrial Reference System 89 (ETRS89) is used as the standard precise GPS coordinate system throughout Europe. Supported by EuroGeographics and endorsed by the EU, this reference system forms the backbone for all geographic and geodynamic projects on the European territory both on a national as on an international level.
The Expression Atlas provides information on gene expression patterns under different biological conditions such as a gene knock out, a plant treated with a compound, or in a particular organism part or cell. It includes both microarray and RNA-seq data. The data is re-analysed in-house to detect interesting expression patterns under the conditions of the original experiment. There are two components to the Expression Atlas, the Baseline Atlas and the Differential Atlas. The Baseline Atlas displays information about which gene products are present (and at what abundance) in "normal" conditions (e.g. tissue, cell type). It aims to answer questions such as "which genes are specifically expressed in human kidney?". This component of the Expression Atlas consists of highly-curated and quality-checked RNA-seq experiments from ArrayExpress. It has data for many different animal and plant species. New experiments are added as they become available. The Differential Atlas allows users to identify genes that are up- or down-regulated in a wide variety of different experimental conditions such as yeast mutants, cadmium treated plants, cystic fibrosis or the effect on gene expression of mind-body practice. Both microarray and RNA-seq experiments are included in the Differential Atlas. Experiments are selected from ArrayExpress and groups of samples are manually identified for comparison e.g. those with wild type genotype compared to those with a gene knock out. Each experiment is processed through our in-house differential expression statistical analysis pipeline to identify genes with a high probability of differential expression.