Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 169 result(s)
SimTK is a free project-hosting platform for the biomedical computation community that enables researchers to easily share their software, data, and models and provides the infrastructure so they can support and grow a community around their projects. It has over 126.656 members, hosts 1.648 projects from researchers around the world, and has had more than 2.095.783 files downloaded from it. Individuals have created SimTK projects to meet publisher and funding agencies’ software and data sharing requirements, run scientific challenges, create a collection of their community’s resources, and much more.
Country
>>>!!!<<< OMICtools is no longer online >>>!!!<<< We founded OMICtools in 2012 with the vision to drive progress in life science. We wanted to empower life science practitioners all over the world to achieve breakthroughs by getting data to talk. While we made tremendous progress over the past three years, developing a bioinformatics database of software and dynamic protocols, attracting more than 1.5M visitors a year, we lacked the financial support we needed to continue. We certainly gave it our all. We'd like to thank everyone who believed in us and supported us on this journey: all our users, our community, our friends, families and employees (who we consider as our extended family!). omicX will probably shut down its operations within the next few weeks. The team and I remain firmly committed to our vision, particularly at this very difficult time. It is now, more than ever before, that researchers need access to a resource that pools collective scientific intelligence. We have accumulated an awful lot of experience which we are keen to share. If your institution would be interested in taking over our website and database, to provide researchers with continued access to the platform, or you simply want to stay in touch with the omicX team, contact us at contact@omictools.com or at carine.toutain@fhbx.eu.
TreeGenes is a genomic, phenotypic, and environmental data resource for forest tree species. The TreeGenes database and Dendrome project provide custom informatics tools to manage the flood of information.The database contains several curated modules that support the storage of data and provide the foundation for web-based searches and visualization tools. GMOD GUI tools such as CMAP for genetic maps and GBrowse for genome and transcriptome assemblies are implemented here. A sample tracking system, known as the Forest Tree Genetic Stock Center, sits at the forefront of most large-scale projects. Barcode identifiers assigned to the trees during sample collection are maintained in the database to identify an individual through DNA extraction, resequencing, genotyping and phenotyping. DiversiTree, a user-friendly desktop-style interface, queries the TreeGenes database and is designed for bulk retrieval of resequencing data. CartograTree combines geo-referenced individuals with relevant ecological and trait databases in a user-friendly map-based interface. ---- The Conifer Genome Network (CGN) is a virtual nexus for researchers working in conifer genomics. The CGN web site is maintained by the Dendrome Project at the University of California, Davis.
This database serves forest tree scientists by providing online access to hardwood tree genomic and genetic data, including assembled reference genomes, transcriptomes, and genetic mapping information. The web site also provides access to tools for mining and visualization of these data sets, including BLAST for comparing sequences, Jbrowse for browsing genomes, Apollo for community annotation and Expression Analysis to build gene expression heatmaps.
Country
jPOSTrepo (Japan ProteOme STandard Repository) is a repository of sharing MS raw/processed data. It consists of a high-speed file upload process, flexible file management system and easy-to-use interfaces. Users can release their "raw/processed" data via this site with a unique identifier number for the paper publication. Users also can suspend (or "embargo") their data until their paper is published. The file transfer from users’ computer to our repository server is very fast (roughly ten times faster than usual file transfer) and uses only web browsers – it does not require installing any additional software.
BioPortal is an open repository of biomedical ontologies, a service that provides access to those ontologies, and a set of tools for working with them. BioPortal provides a wide range of such tools, either directly via the BioPortal web site, or using the BioPortal web service REST API. BioPortal also includes community features for adding notes, reviews, and even mappings to specific ontologies. BioPortal has four major product components: the web application; the API services; widgets, or applets, that can be installed on your own site; and a Virtual Appliance version that is available for download or through Amazon Web Services machine instance (AMI). There is also a beta release SPARQL endpoint.
Country
GSA is a data repository specialized for archiving raw sequence reads. It supports data generated from a variety of sequencing platforms ranging from Sanger sequencing machines to single-cell sequencing machines and provides data storing and sharing services free of charge for worldwide scientific communities. In addition to raw sequencing data, GSA also accommodates secondary analyzed files in acceptable formats (like BAM, VCF). Its user-friendly web interfaces simplify data entry and submitted data are roughly organized as two parts, viz., Metadata and File, where the former can be further assorted into BioProject, BioSample, Experiment and Run, and the latter contains raw sequence reads.
Country
APID Interactomes is a database that provides a comprehensive collection of protein interactomes for more than 400 organisms based in the integration of known experimentally validated protein-protein physical interactions (PPIs). Construction of the interactomes is done with a methodological approach to report quality levels and coverage over the proteomes for each organism included. In this way, APID provides interactomes from specific organisms that in 25 cases have more than 500 proteins. As a whole APID includes a comprehensive compendium of 90,379 distinct proteins and 678,441 singular interactions. The analytical and integrative effort done in APID unifies PPIs from primary databases of molecular interactions (BIND, BioGRID, DIP, HPRD, IntAct, MINT) and also from experimentally resolved 3D structures (PDB) where more than two distinct proteins have been identified. In this way, 8,388 structures have been analyzed to find specific protein-protein interactions reported with details of their molecular interfaces. APID also includes a new data visualization web-tool that allows the construction of sub-interactomes using query lists of proteins of interest and the visual exploration of the corresponding networks, including an interactive selection of the properties of the interactions (i.e. the reliability of the "edges" in the network) and an interactive mapping of the functional environment of the proteins (i.e. the functional annotations of the "nodes" in the network).
Country
CAZy is a specialist database dedicated to the display and analysis of genomic, structural and biochemical information on Carbohydrate-Active Enzymes (CAZymes). CAZy data are accessible either by browsing sequence-based families or by browsing the content of genomes in carbohydrate-active enzymes. New genomes are added regularly shortly after they appear in the daily releases of GenBank. New families are created based on published evidence for the activity of at least one member of the family and all families are regularly updated, both in content and in description.
With the creation of the Metabolomics Data Repository managed by Data Repository and Coordination Center (DRCC), the NIH acknowledges the importance of data sharing for metabolomics. Metabolomics represents the systematic study of low molecular weight molecules found in a biological sample, providing a "snapshot" of the current and actual state of the cell or organism at a specific point in time. Thus, the metabolome represents the functional activity of biological systems. As with other ‘omics’, metabolites are conserved across animals, plants and microbial species, facilitating the extrapolation of research findings in laboratory animals to humans. Common technologies for measuring the metabolome include mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), which can measure hundreds to thousands of unique chemical entities. Data sharing in metabolomics will include primary raw data and the biological and analytical meta-data necessary to interpret these data. Through cooperation between investigators, metabolomics laboratories and data coordinating centers, these data sets should provide a rich resource for the research community to enhance preclinical, clinical and translational research.
ToxoDB is a genome database for the genus Toxoplasma, a set of single-celled eukaryotic pathogens that cause human and animal diseases, including toxoplasmosis.
Country
MTD is focused on mammalian transcriptomes with a current version that contains data from humans, mice, rats and pigs. Regarding the core features, the MTD browses genes based on their neighboring genomic coordinates or joint KEGG pathway and provides expression information on exons, transcripts, and genes by integrating them into a genome browser. We developed a novel nomenclature for each transcript that considers its genomic position and transcriptional features.
Country
The Toxin and Toxin Target Database is a unique bioinformatics resource that combines detailed toxin data with comprehensive toxin target information. The focus of the T3DB is on providing mechanisms of toxicity and target proteins for each toxin. This dual nature of the T3DB, in which toxin and toxin target records are interactively linked in both directions, makes it unique from existing databases.
The Database explores the interactions of chemicals and proteins. It integrates information about interactions from metabolic pathways, crystal structures, binding experiments and drug-target relationships. Inferred information from phenotypic effects, text mining and chemical structure similarity is used to predict relations between chemicals. STITCH further allows exploring the network of chemical relations, also in the context of associated binding proteins.
The CPTAC Data Portal is the centralized repository for the dissemination of proteomic data collected by the Proteome Characterization Centers (PCCs) for the CPTAC program. The portal also hosts analyses of the mass spectrometry data (mapping of spectra to peptide sequences and protein identification) from the PCCs and from a CPTAC-sponsored common data analysis pipeline (CDAP).
Country
MaxQB stores and displays collections of large proteomics projects and allows joint analysis and comparison. As a first dataset is contains proteome data of 11 different human cell lines. The 11 cell line proteomes together identify proteins expressed from more than half of all human genes. For each protein of interest, expression levels estimated by label-free quantification can be visualized across the cell lines. Similarly, the expression rank order and estimated amount of each protein within each proteome are plotted.
GeneCards is a searchable, integrative database that provides comprehensive, user-friendly information on all annotated and predicted human genes. It automatically integrates gene-centric data from ~125 web sources, including genomic, transcriptomic, proteomic, genetic, clinical and functional information.
Database of mass spectra of known, unknown and provisionally identified substances. MassBank is the first public repository of mass spectral data for sharing them among scientific research community. MassBank data are useful for the chemical identification and structure elucidation of chemical compounds detected by mass spectrometry.
Country
Stemformatics is a collaboration between the stem cell and bioinformatics community. We were motivated by the plethora of exciting cell models in the public and private domains, and the realisation that for many biologists these were mostly inaccessible. We wanted a fast way to find and visualise interesting genes in these exemplar stem cell datasets. We'd like you to explore. You'll find data from leading stem cell laboratories in a format that is easy to search, easy to visualise and easy to export.
OpenWorm aims to build the first comprehensive computational model of the Caenorhabditis elegans (C. elegans), a microscopic roundworm. With only a thousand cells, it solves basic problems such as feeding, mate-finding and predator avoidance. Despite being extremely well studied in biology, this organism still eludes a deep, principled understanding of its biology. We are using a bottom-up approach, aimed at observing the worm behaviour emerge from a simulation of data derived from scientific experiments carried out over the past decade. To do so we are incorporating the data available in the scientific community into software models. We are engineering Geppetto and Sibernetic, open-source simulation platforms, to be able to run these different models in concert. We are also forging new collaborations with universities and research institutes to collect data that fill in the gaps All the code we produce in the OpenWorm project is Open Source and available on GitHub.