Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 20 result(s)
The EarthEnv project is a collaborative project of biodiversity scientists and remote sensing experts to develop near-global standardized, 1km resolution layers for monitoring and modeling biodiversity, ecosystems, and climate. The work is supported by NCEAS, NASA, NSF, and Yale University.
Measurements Of Pollution In The Troposphere (MOPITT) was launched into sun-synchronous polar orbit on December 18, 1999, aboard TERRA, a NASA satellite orbiting 705 km above the Earth. MOPITT monitors changes in pollution patterns and the effects on Earth’s troposphere. MOPITT uses near-infrared radiation at 2.3 µm and thermal-infrared radiation at 4.7 µm to calculate atmospheric profiles of CO.
Country
The TERN Data Discovery Portal (TDDP) is a gateway to search and access all the datasets published by the Australian Terrestrial Ecosystem Research Network. In the TERN data discovery portal, users can conduct textual and graphical searches on the metadata catalogue using a web interface with temporal, spatial, and eco science related controlled vocabulary keywords. Requests to download data discovered through different data services associated with TERN. Downloading, using and sharing data will be subjected to the TERN data licensing framework (https://www.tern.org.au/datalicence/).
The International Center for Global Earth Models collects and distributes historical and actual global gravity field models of the Earth and offers calculation service for derived quantities. In particular the tasks include: collecting and archiving of all existing global gravity field models, web interface for getting access to global gravity field models, web based visualization of the gravity field models their differences and their time variation, web based service for calculating different functionals of the gravity field models, web site for tutorials on spherical harmonics and the theory of the calculation service. As new service since 2016, ICGEM is providing a Digital Object Identifier (DOI) for the data set of the model (the coefficients).
Country
Australian Ocean Data Network (AODN) provides data collected by the Australian marine community. AODN's data is searchable via map interface and metadata catalogue. AODN is Australia's exhaustive repository for marine and climate data. AODN has merged with IMOS eMarine Information Infrastructure (eMII) Facility in May 2016. IMOS is a multi-institutional collaboration with a focus on open data access. It is ideally placed to manage the AODN on behalf of the Australian marine and climate community.
Content type(s)
The Network for the Detection of Atmospheric Composition Change (NDACC), a major contributor to the worldwide atmospheric research effort, consists of a set of globally distributed research stations providing consistent, standardized, long-term measurements of atmospheric trace gases, particles, spectral UV radiation reaching the Earth's surface, and physical parameters, centered around the following priorities.
NASA funded OpenAltimetry facilitates the advanced discovery, processing, and visualization services for ICESat and ICESat-2 altimeter data.
The twin GRACE satellites were launched on March 17, 2002. Since that time, the GRACE Science Data System (SDS) has produced and distributed estimates of the Earth gravity field on an ongoing basis. These estimates, in conjunction with other data and models, have provided observations of terrestrial water storage changes, ice-mass variations, ocean bottom pressure changes and sea-level variations. This portal, together with PODAAC, is responsible for the distribution of the data and documentation for the GRACE project.
CARIBIC is an innovative scientific project to study and monitor important chemical and physical processes in the Earth´s atmosphere. Detailed and extensive measurements are made during long distance flights. We deploy an airfreight container with automated scientific apparatus which are connected to an air and particle (aerosol) inlet underneath the aircraft. We use an Airbus A340-600 from Lufthansa since December 2004.
GRID-Geneva is a unique platform providing analyses and solutions for a wide range of environmental issues. GRID-Geneva serves primarily the needs of its three institutional partners - UNEP, the Swiss Federal Office for the Environment (FOEN) and the University of Geneva (UniGe) - which are linked by an ongoing, multi-year “Partnership Agreement”, along with other local-to-global stakeholders. GRID-Geneva is also a bilingual English and French centre and the key francophone link within the global GRID network of centres. GRID-Geneva is a key centre of geo-spatial know-how, with strengths in GIS, IP/remote sensing and statistical analyses, integrated through modern spatial data infrastructures and web applications. Working at the interface between scientific information and policy/decision-making, GRID-Geneva also helps to develop capacities in these fields of expertise among target audiences, countries and other groups.
Country
RESPECT aims to unveil for the mountain rain forest in South Ecuador how major ecosystem functions, (i) ecosystem biomass production, and (ii) water fluxes, are affected by ongoing and future environmental changes through alterations in response and effect traits of relevant biota. The research question is addressed with two approaches: (i) A newest generation Land Surface Model (LSM) and (ii) a statistical response–effect framework (REF). By including (i) specific Plant Functional Types (PFTs) for the megadiverse biodiversity hotspot, (ii) introducing trait diversity, (iii) new modules for tree hydraulics and (iv) new modules of focal biological processes (seed dispersal and PFT establishment, herbivory) we will conduct a biodiversification of LSMs.
SCISAT, also known as the Atmospheric Chemistry Experiment (ACE), is a Canadian Space Agency small satellite mission for remote sensing of the Earth's atmosphere using solar occultation. The satellite was launched on 12 August 2003 and continues to function perfectly. The primary mission goal is to improve our understanding of the chemical and dynamical processes that control the distribution of ozone in the stratosphere and upper troposphere, particularly in the Arctic. The high precision and accuracy of solar occultation makes SCISAT useful for monitoring changes in atmospheric composition and the validation of other satellite instruments. The satellite carries two instruments. A high resolution (0.02 cm-¹) infrared Fourier transform spectrometer (FTS) operating from 2 to 13 microns (750-4400 cm-¹) is measuring the vertical distribution of trace gases, particles and temperature. This provides vertical profiles of atmospheric constituents including essentially all of the major species associated with ozone chemistry. Aerosols and clouds are monitored using the extinction of solar radiation at 1.02 and 0.525 microns as measured by two filtered imagers. The vertical resolution of the FTS is about 3-4 km from the cloud tops up to about 150 km. Peter Bernath of the University of Waterloo is the principal investigator. A dual optical spectrograph called MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) covers the 400-1030 nm spectral region and measures primarily ozone, nitrogen dioxide and aerosol/cloud extinction. It has a vertical resolution of about 1-2 km. Tom McElroy of Environment and Climate Change Canada is the principal investigator. ACE data are freely available from the University of Waterloo website. SCISAT was designated an ESA Third Party Mission in 2005. ACE data are freely available through an ESA portal.
The objective of this database is to stimulate the exchange of information and the collaboration between researchers within the ChArMEx community. However, this community is not exclusive and researchers not directly involved in ChArMEx, but who wish to contribute to the achievements of ChArMEx scientific and/or educational goals are welcome to join-in. The database is a depository for all the data collected during the various projects that contribute to ChArMEx coordinated program. It aims at documenting, storing and distributing the data produced or used by the project community. However, it is also intended to host datasets that were produced outside the ChArMEx program but which are meaningful to ChArMEx scientific and/or educational goals. Any data owner who wishes to add or link his dataset to ChArMEx database is welcome to contact the database manager in order to get help and support. The ChArMEx database includes past and recent geophysical in situ observations, satellite products and model outputs. The database organizes the data management and provides data services to end-users of ChArMEx data. The database system provides a detailed description of the products and uses standardized formats whenever it is possible. It defines the access rules to the data and details the mutual rights and obligations of data providers and users (see ChArMEx data and publication policy). The database is being developed jointly by : SEDOO, OMP Toulouse , ICARE, Lille and ESPRI, IPSL Paris
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.
Country
The Institute of Ocean Sciences (IOS)/Ocean Sciences Division (OSD) data archive contains the holdings of oceanographic data generated by the IOS and other agencies and laboratories, including the Institute of Oceanography at the University of British Columbia and the Pacific Biological Station. The contents include data from B.C. coastal waters and inlets, B.C. continental shelf waters, open ocean North Pacific waters, Beaufort Sea and the Arctic Archipelago.
The Online Data Portal (ODP) is an evolving project to support collaborative river restoration projects, such as the TRRP. The goal is to provide a centralized clearing house of documents and data for program partners, stakeholders, and the public. The functionality and data holdings will continue to be expanded over the next few years. The ability to store Data Packages is new as of Fall 2011 and holdings should expand substantially in the months afterward. A project to scan many older documents also began in December 2011. Simple time-series datasets have long been stored in the ODP, but holdings of these data are likely to increase as TRRP implements an upcoming Data Management and Utility Plan. Major upgrades to the Interactive Map are expected to start in winter and spring of 2012. The long term vision is that many data resources will be accessible both by text searches and via the Interactive Map. The ODP will be available for use by other river restoration programs. ODP is followed by TRRP DataPort.
TerraSAR-X is a German satellite for Earth Observation, which was launched on July 14, 2007. The mission duration was foreseen to be 5 years. TerraSAR-X carries an innovative high resolution x-band sensor for imaging with resolution up to 1 m. TerraSAR-X carries as secondary payload an IGOR GPS receiver with GPS RO capability. GFZ provided the IGOR and is responsible for the related TOR experiment (Tracking, Occultation and Ranging). TerraSAR-X provides continuously atmospheric GPS data in near-real time. These data from GFZ are continuously assimilated in parallel with those from GRACE-A by the world-leading weather centers to improve their global forecasts. TerraSAR-X, together with TanDEM-X also forms a twin-satellite constellation for atmosphere sounding and generates an unique data set for the evaluation of the accuracy of the GPS-RO technique.