Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 56 result(s)
This database will provide a central location for scientists to browse uniquely observed proteoforms and to contribute their own datasets. Top-down proteomics is a method of protein identification that uses an ion trapping mass spectrometer to store an isolated protein ion for mass measurement and tandem mass spectrometry analysis.
ArrayExpress is one of the major international repositories for high-throughput functional genomics data from both microarray and high-throughput sequencing studies, many of which are supported by peer-reviewed publications. Data sets are submitted directly to ArrayExpress and curated by a team of specialist biological curators. In the past (until 2018) datasets from the NCBI Gene Expression Omnibus database were imported on a weekly basis. Data is collected to MIAME and MINSEQE standards.
Human Protein Reference Database (HPRD) has been established by a team of biologists, bioinformaticists and software engineers. This is a joint project between the PandeyLab at Johns Hopkins University, and Institute of Bioinformatics, Bangalore. HPRD is a definitive repository of human proteins. This database should serve as a ready reckoner for researchers in their quest for drug discovery, identification of disease markers and promote biomedical research in general. Human Proteinpedia (www.humanproteinpedia.org) is its associated data portal.
<<<!!!<<<The repository is no longer available <<<!!!<<< TOXNET has moved. Most content will continue to be collected and reviewed; selected information is accessible through PubChem, PubMed, and Bookshelf. If you have questions, please contact NLM Customer Support at https://support.nlm.nih.gov/ >>>!!!>>>
<<<!!!<<< Effective May 2024, NCBI's Genome resource will no longer be available. NCBI Genome data can now be found on the NCBI Datasets taxonomy pages. https://www.re3data.org/repository/r3d100014298 >>>!!!>>> The Genome database contains annotations and analysis of eukaryotic and prokaryotic genomes, as well as tools that allow users to compare genomes and gene sequences from humans, microbes, plants, viruses and organelles. Users can browse by organism, and view genome maps and protein clusters.
Content type(s)
>>>!!!<<< Data originally published in the JCB DataViewer has been moved BioStudies. Please note that while the majority of data were moved, some authors opted to remove their data completely. >>>!!!<<< Migrated data can be found at https://www.ebi.ac.uk/biostudies/JCB/studies. Screen data are available in the Image Data Resource repository. http://idr.openmicroscopy.org/webclient/?experimenter=-1 >>>!!!<<< The DataViewer was decommissioned in 2018 as the journal evolved to an all-encompassing archive policy towards original source data and as new data repositories that go beyond archiving data and allow investigators to make new connections between datasets, potentially driving discovery, emerged. JCB authors are encouraged to make available all datasets included in the manuscript from the date of online publication either in a publicly available database or as supplemental materials hosted on the journal website. We recommend that our authors store and share their data in appropriate publicly available databases based on data type and/or community standard. >>>!!!<<<
<<<!!!<<< The page is no longer available. This database was already retired, and on this page users could find information on how to search and use these sequences. dbSTS was an NCBI resource that contained sequence data for short genomic landmark sequences or Sequence Tagged Sites. STS sequences are incorporated into the STS Division of GenBank. >>>!!!>>>
A repository for high-quality gene models produced by the manual annotation of vertebrate genomes. The final update of Vega, version 68, was released in February 2017 and is now archived at vega.archive.ensembl.org. We plan to maintain this resource until Feb 2020.
<<<!!!<<< NCBI announced plans to retire the Clone DB web interface. Pursuant to this retirement, starting on May 27, 2019, all web pages associated with Clone DB and CloneFinder will redirect to this blog post https://ncbiinsights.ncbi.nlm.nih.gov/?s=clone+db. Links to Clone DB from the NCBI home page will also be going away. >>>!!!>>>
This resource allows users to search for and compare influenza virus genomes and gene sequences taken from GenBank. It also provides a virus sequence annotation tool and links to other influenza resources: NIAID project, JCVI Flu, Influenza research database, CDC Flu, Vaccine Selection and WHO Flu. NOTE: In Fall 2024, NCBI plans to redirect the Influenza Virus Resource to NCBI Virus, possibly as soon as September. For most up-to-date and accurate virus data, see NCBI Virus https://www.re3data.org/repository/r3d100014322
Complete Genomics provides free public access to a variety of whole human genome data sets generated from Complete Genomics’ sequencing service. The research community can explore and familiarize themselves with the quality of these data sets, review the data formats provided from our sequencing service, and augment their own research with additional summaries of genomic variation across a panel of diverse individuals. The quality of these data sets is representative of what a customer can expect to receive for their own samples. This public genome repository comprises genome results from both our Standard Sequencing Service (69 standard, non-diseased samples) and the Cancer Sequencing Service (two matched tumor and normal sample pairs). In March 2013 Complete Genomics was acquired by BGI-Shenzhen , the world’s largest genomics services company. BGI is a company headquartered in Shenzhen, China that provides comprehensive sequencing and bioinformatics services for commercial science, medical, agricultural and environmental applications. Complete Genomics is now focused on building a new generation of high-throughput sequencing technology and developing new and exciting research, clinical and consumer applications.
AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals’ transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated.
The Cancer Genome Atlas (TCGA) Data Portal provides a platform for researchers to search, download, and analyze data sets generated by TCGA. It contains clinical information, genomic characterization data, and high level sequence analysis of the tumor genomes. The Data Coordinating Center (DCC) is the central provider of TCGA data. The DCC standardizes data formats and validates submitted data.
The MG-RAST server is an open source system for annotation and comparative analysis of metagenomes. Users can upload raw sequence data in fasta format; the sequences will be normalized and processed and summaries automatically generated. The server provides several methods to access the different data types, including phylogenetic and metabolic reconstructions, and the ability to compare the metabolism and annotations of one or more metagenomes and genomes. In addition, the server offers a comprehensive search capability. Access to the data is password protected, and all data generated by the automated pipeline is available for download in a variety of common formats. MG-RAST has become an unofficial repository for metagenomic data, providing a means to make your data public so that it is available for download and viewing of the analysis without registration, as well as a static link that you can use in publications. It also requires that you include experimental metadata about your sample when it is made public to increase the usefulness to the community.
The MMRRC is the nation’s premier national public repository system for mutant mice. Funded by the NIH continuously since 1999, the MMRRC archives and distributes scientifically valuable spontaneous and induced mutant mouse strains and ES cell lines for use by the biomedical research community. The MMRRC consists of a national network of breeding and distribution repositories and an Informatics Coordination and Service Center located at 4 major academic centers across the nation. The MMRRC is committed to upholding the highest standards of experimental design and quality control to optimize the reproducibility of research studies using mutant mice.
Pathogen Portal is a repository linking to the Bioinformatics Resource Centers (BRCs) sponsored by the National Institute of Allergy and Infectious Diseases (NIAID) and maintained by The Virginia Bioinformatics Institute. The BRCs are providing web-based resources to scientific community conducting basic and applied research on organisms considered potential agents of biowarfare or bioterrorism or causing emerging or re-emerging diseases. The Pathogen Portal supports and links to five Bioinformatics Resource Centers (BRCs). Each BRC specializes in a different group of pathogens, focusing on, but not limited to, pathogens causing (Re-)Emerging Infectious Diseases, and those in the NIAID Category A-C Priority Pathogen lists for biodefense research. The scope of the BRCs also includes Invertebrate Vectors of Human Disease. Pathogen Portal covers EuPathDB, IRD, PATRIC, VectorBase and ViPR.
<<<!!!<<< This repository is no longer available. >>>!!!>>> PATRIC will go offline by mid-December2022. Here is what you need to know. As announced previously, PATRIC, the bacterial BRC, and IRD / ViPR, the viral BRCs, are being merged into the new Bacterial and Viral Bioinformatics Resource Center (BV-BRC). BV-BRC combines the data, tools, and technologies from these BRCs to provide an integrated resource for bacterial and viral genomics-based infectious disease research.
GeneLab is an interactive, open-access resource where scientists can upload, download, store, search, share, transfer, and analyze omics data from spaceflight and corresponding analogue experiments. Users can explore GeneLab datasets in the Data Repository, analyze data using the Analysis Platform, and create collaborative projects using the Collaborative Workspace. GeneLab promises to facilitate and improve information sharing, foster innovation, and increase the pace of scientific discovery from extremely rare and valuable space biology experiments. Discoveries made using GeneLab have begun and will continue to deepen our understanding of biology, advance the field of genomics, and help to discover cures for diseases, create better diagnostic tools, and ultimately allow astronauts to better withstand the rigors of long-duration spaceflight. GeneLab helps scientists understand how the fundamental building blocks of life itself – DNA, RNA, proteins, and metabolites – change from exposure to microgravity, radiation, and other aspects of the space environment. GeneLab does so by providing fully coordinated epigenomics, genomics, transcriptomics, proteomics, and metabolomics data alongside essential metadata describing each spaceflight and space-relevant experiment. By carefully curating and implementing best practices for data standards, users can combine individual GeneLab datasets to gain new, comprehensive insights about the effects of spaceflight on biology. In this way, GeneLab extends the scientific knowledge gained from each biological experiment conducted in space, allowing scientists from around the world to make novel discoveries and develop new hypotheses from these priceless data.
The ENCODE Encyclopedia organizes the most salient analysis products into annotations, and provides tools to search and visualize them. The Encyclopedia has two levels of annotations: Integrative-level annotations integrate multiple types of experimental data and ground level annotations. Ground-level annotations are derived directly from the experimental data, typically produced by uniform processing pipelines.
The UniProt Knowledgebase (UniProtKB) is the central hub for the collection of functional information on proteins, with accurate, consistent and rich annotation. In addition to capturing the core data mandatory for each UniProtKB entry (mainly, the amino acid sequence, protein name or description, taxonomic data and citation information), as much annotation information as possible is added. This includes widely accepted biological ontologies, classifications and cross-references, and clear indications of the quality of annotation in the form of evidence attribution of experimental and computational data. The Universal Protein Resource (UniProt) is a comprehensive resource for protein sequence and annotation data. The UniProt databases are the UniProt Knowledgebase (UniProtKB), the UniProt Reference Clusters (UniRef), and the UniProt Archive (UniParc). The UniProt Metagenomic and Environmental Sequences (UniMES) database is a repository specifically developed for metagenomic and environmental data. The UniProt Knowledgebase,is an expertly and richly curated protein database, consisting of two sections called UniProtKB/Swiss-Prot and UniProtKB/TrEMBL.