Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 18 result(s)
DNASU is a central repository for plasmid clones and collections. Currently we store and distribute over 200,000 plasmids including 75,000 human and mouse plasmids, full genome collections, the protein expression plasmids from the Protein Structure Initiative as the PSI: Biology Material Repository (PSI : Biology-MR), and both small and large collections from individual researchers. We are also a founding member and distributor of the ORFeome Collaboration plasmid collection.
INDEPTH is a global network of research centres that conduct longitudinal health and demographic evaluation of populations in low- and middle-income countries (LMICs). INDEPTH aims to strengthen global capacity for Health and Demographic Surveillance Systems (HDSSs), and to mount multi-site research to guide health priorities and policies in LMICs, based on up-to-date scientific evidence. The data collected by the INDEPTH Network members constitute a valuable resource of population and health data for LMIC countries. This repository aims to make well documented anonymised longitudinal microdata from these Centres available to data users.
The IMPC is a confederation of international mouse phenotyping projects working towards the agreed goals of the consortium: To undertake the phenotyping of 20,000 mouse mutants over a ten year period, providing the first functional annotation of a mammalian genome. Maintain and expand a world-wide consortium of institutions with capacity and expertise to produce germ line transmission of targeted knockout mutations in embryonic stem cells for 20,000 known and predicted mouse genes. Test each mutant mouse line through a broad based primary phenotyping pipeline in all the major adult organ systems and most areas of major human disease. Through this activity and employing data annotation tools, systematically aim to discover and ascribe biological function to each gene, driving new ideas and underpinning future research into biological systems; Maintain and expand collaborative “networks” with specialist phenotyping consortia or laboratories, providing standardized secondary level phenotyping that enriches the primary dataset, and end-user, project specific tertiary level phenotyping that adds value to the mammalian gene functional annotation and fosters hypothesis driven research; and Provide a centralized data centre and portal for free, unrestricted access to primary and secondary data by the scientific community, promoting sharing of data, genotype-phenotype annotation, standard operating protocols, and the development of open source data analysis tools. Members of the IMPC may include research centers, funding organizations and corporations.
The Cancer Genome Atlas (TCGA) Data Portal provides a platform for researchers to search, download, and analyze data sets generated by TCGA. It contains clinical information, genomic characterization data, and high level sequence analysis of the tumor genomes. The Data Coordinating Center (DCC) is the central provider of TCGA data. The DCC standardizes data formats and validates submitted data.
This library is a public and easily accessible resource database of images, videos, and animations of cells, capturing a wide diversity of organisms, cell types, and cellular processes. The Cell Image Library has been merged with "Cell Centered Database" in 2017. The purpose of the database is to advance research on cellular activity, with the ultimate goal of improving human health.
The Fungal Genetics Stock Center has preserved and distributed strains of genetically characterized fungi since 1960. The collection includes over 20,000 accessioned strains of classical and genetically engineered mutants of key model, human, and plant pathogenic fungi. These materials are distributed as living stocks to researchers around the world.
Complete Genomics provides free public access to a variety of whole human genome data sets generated from Complete Genomics’ sequencing service. The research community can explore and familiarize themselves with the quality of these data sets, review the data formats provided from our sequencing service, and augment their own research with additional summaries of genomic variation across a panel of diverse individuals. The quality of these data sets is representative of what a customer can expect to receive for their own samples. This public genome repository comprises genome results from both our Standard Sequencing Service (69 standard, non-diseased samples) and the Cancer Sequencing Service (two matched tumor and normal sample pairs). In March 2013 Complete Genomics was acquired by BGI-Shenzhen , the world’s largest genomics services company. BGI is a company headquartered in Shenzhen, China that provides comprehensive sequencing and bioinformatics services for commercial science, medical, agricultural and environmental applications. Complete Genomics is now focused on building a new generation of high-throughput sequencing technology and developing new and exciting research, clinical and consumer applications.
MassBank of North America (MoNA) is a metadata-centric, auto-curating repository designed for efficient storage and querying of mass spectral records. It intends to serve as a the framework for a centralized, collaborative database of metabolite mass spectra, metadata and associated compounds. MoNA currently contains over 200,000 mass spectral records from experimental and in-silico libraries as well as from user contributions.
<<<!!!<<< As of Aug. 15, 2019, we are suspending plasmid distribution from the collection. If you would like to request BioPlex ORF clones (Harper lab) or if you identify other clones in our collection for which you cannot find an alternative, please email us at plasmidhelp@hms.harvard.edu. >>>!!!>>>
TCIA is a service which de-identifies and hosts a large archive of medical images of cancer accessible for public download. The data are organized as “collections”; typically patients’ imaging related by a common disease (e.g. lung cancer), image modality or type (MRI, CT, digital histopathology, etc) or research focus. Supporting data related to the images such as patient outcomes, treatment details, genomics and expert analyses are also provided when available.
The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Data and Specimen Hub (DASH) is a centralized resource that allows researchers to share and access de-identified data from studies funded by NICHD. DASH also serves as a portal for requesting biospecimens from selected DASH studies.
BEI Resources was established by the National Institute of Allergy and Infectious Diseases (NIAID) to provide reagents, tools and information for studying Category A, B, and C priority pathogens, emerging infectious disease agents, non-pathogenic microbes and other microbiological materials of relevance to the research community. BEI Resources acquires authenticates, and produces reagents that scientists need to carry out basic research and develop improved diagnostic tests, vaccines, and therapies. By centralizing these functions within BEI Resources, access to and use of these materials in the scientific community is monitored and quality control of the reagents is assured
The 1000 Genomes Project is an international collaboration to produce an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts. This resource will support genome-wide association studies and other medical research studies. The genomes of about 2500 unidentified people from about 25 populations around the world will be sequenced using next-generation sequencing technologies. The results of the study will be freely and publicly accessible to researchers worldwide. The International Genome Sample Resource (IGSR) has been established at EMBL-EBI to continue supporting data generated by the 1000 Genomes Project, supplemented with new data and new analysis.
<<<!!!<<< This repository is no longer available. >>>!!!>>> PATRIC will go offline by mid-December2022. Here is what you need to know. As announced previously, PATRIC, the bacterial BRC, and IRD / ViPR, the viral BRCs, are being merged into the new Bacterial and Viral Bioinformatics Resource Center (BV-BRC). BV-BRC combines the data, tools, and technologies from these BRCs to provide an integrated resource for bacterial and viral genomics-based infectious disease research.
Tthe Lipidomics Gateway - a free, comprehensive website for researchers interested in lipid biology, provided by the LIPID MAPS (Lipid Metabolites and Pathways Strategy) Consortium. The LIPID MAPS Lipidomics Gateway provides a rich collection of information and resources to help you stay abreast of the latest developments in this rapidly expanding field. LIPID Metabolites And Pathways Strategy (LIPID MAPS®) is a multi-institutional effort created in 2003 to identify and quantitate, using a systems biology approach and sophisticated mass spectrometers, all of the major — and many minor — lipid species in mammalian cells, as well as to quantitate the changes in these species in response to perturbation. The ultimate goal of our research is to better understand lipid metabolism and the active role lipids play in diabetes, stroke, cancer, arthritis, Alzheimer's and other lipid-based diseases in order to facilitate development of more effective treatments. Since our inception, we have made great strides toward defining the "lipidome" (an inventory of the thousands of individual lipid molecular species) in the mouse macrophage. We have also worked to make lipid analysis easier and more accessible for the broader scientific community and to advance a robust research infrastructure for the international research community. We share new lipidomics findings and methods, hold annual meetings open to all interested investigators, and are exploring joint efforts to extend the use of these powerful new methods to new applications