Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 11 result(s)
Rhea is a freely available and comprehensive resource of expert-curated biochemical reactions. It has been designed to provide a non-redundant set of chemical transformations for applications such as the functional annotation of enzymes, pathway inference and metabolic network reconstruction. There are three types of reaction participants (reactants and products): Small molecules, Rhea polymers, Generic compounds. All three types of reaction participants are linked to the ChEBI database (Chemical Entities of Biological Interest) which provides detailed information about structure, formula and charge. Rhea provides built-in validations that ensure both mass and charge balance of the reactions. We have populated the database with the reactions found in the enzyme classification (i.e. in the IntEnz and ENZYME databases), extending it with additional known reactions of biological interest. While the main focus of Rhea is enzyme-catalysed reactions, other biochemical reactions (including those that are often termed "spontaneous") also are included.
The Mouse Tumor Biology (MTB) Database supports the use of the mouse as a model system of hereditary cancer by providing electronic access to: Information on endogenous spontaneous and induced tumors in mice, including tumor frequency & latency data, Information on genetically defined mice (inbred, hybrid, mutant, and genetically engineered strains of mice) in which tumors arise, Information on genetic factors associated with tumor susceptibility in mice and somatic genetic-mutations observed in the tumors, Tumor pathology reports and images, References, supporting MTB data and Links to other online resources for cancer.
Launched in 2000, WormBase is an international consortium of biologists and computer scientists dedicated to providing the research community with accurate, current, accessible information concerning the genetics, genomics and biology of C. elegans and some related nematodes. In addition to their curation work, all sites have ongoing programs in bioinformatics research to develop the next generations of WormBase structure, content and accessibility
The RESID Database of Protein Modifications is a comprehensive collection of annotations and structures for protein modifications including amino-terminal, carboxyl-terminal and peptide chain cross-link post-translational modifications.
The CATH database is a hierarchical domain classification of protein structures in the Protein Data Bank. Protein structures are classified using a combination of automated and manual procedures. There are four major levels in the CATH hierarchy; Class, Architecture, Topology and Homologous superfamily.
Xenbase's mission is to provide the international research community with a comprehensive, integrated and easy to use web based resource that gives access the diverse and rich genomic, expression and functional data available from Xenopus research. Xenbase also provides a critical data sharing infrastructure for many other NIH-funded projects, and is a focal point for the Xenopus community. In addition to our primary goal of supporting Xenopus researchers, Xenbase enhances the availability and visibility of Xenopus data to the broader biomedical research community.
Country
Species included in PlantTFDB 4.0 covers the main lineages of green plants. Therefore, PlantTFDB provides genomic TF repertoires across Viridiplantae. To provide comprehensive information for the TF family, a brief introduction and key references are presented for each family. Comprehensive annotations are made for each identified TF, including functional domains, 3D structures, gene ontology (GO), plant ontology (PO), expression information, expert-curated functional description, regulation information, interaction, conserved elements, references, and annotations in various databases such as UniProt, RefSeq, TransFac, STRING, and VISTA. By inferring orthologous groups and constructing phylogenetic trees, evolutionary relationships among identified TFs were inferred. In addition, PlantTFDB has a simple and user-friendly interface to allow users to query based on combined conditions or make sequence similarity search using BLAST. The new version PlantTFDB 5.0 has been incorporated into PlantRegMap http://plantregmap.gao-lab.org/.
GenBankĀ® is a comprehensive database that contains publicly available nucleotide sequences for almost 260 000 formally described species. These sequences are obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole-genome shotgun (WGS) and environmental sampling projects. Most submissions are made using the web-based BankIt or standalone Sequin programs, and GenBank staff assigns accession numbers upon data receipt. Daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through the NCBI Entrez retrieval system, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP.
The 1000 Genomes Project is an international collaboration to produce an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts. This resource will support genome-wide association studies and other medical research studies. The genomes of about 2500 unidentified people from about 25 populations around the world will be sequenced using next-generation sequencing technologies. The results of the study will be freely and publicly accessible to researchers worldwide. The International Genome Sample Resource (IGSR) has been established at EMBL-EBI to continue supporting data generated by the 1000 Genomes Project, supplemented with new data and new analysis.
dbEST is a division of GenBank that contains sequence data and other information on "single-pass" cDNA sequences, or "Expressed Sequence Tags", from a number of organisms. Expressed Sequence Tags (ESTs) are short (usually about 300-500 bp), single-pass sequence reads from mRNA (cDNA). Typically they are produced in large batches. They represent a snapshot of genes expressed in a given tissue and/or at a given developmental stage. They are tags (some coding, others not) of expression for a given cDNA library. Most EST projects develop large numbers of sequences. These are commonly submitted to GenBank and dbEST as batches of dozens to thousands of entries, with a great deal of redundancy in the citation, submitter and library information. To improve the efficiency of the submission process for this type of data, we have designed a special streamlined submission process and data format. dbEST also includes sequences that are longer than the traditional ESTs, or are produced as single sequences or in small batches. Among these sequences are products of differential display experiments and RACE experiments. The thing that these sequences have in common with traditional ESTs, regardless of length, quality, or quantity, is that there is little information that can be annotated in the record. If a sequence is later characterized and annotated with biological features such as a coding region, 5'UTR, or 3'UTR, it should be submitted through the regular GenBank submissions procedure (via BankIt or Sequin), even if part of the sequence is already in dbEST. dbEST is reserved for single-pass reads. Assembled sequences should not be submitted to dbEST. GenBank will accept assembled EST submissions for the forthcoming TSA (Transcriptome Shotgun Assembly) division. The individual reads which make up the assembly should be submitted to dbEST, the Trace archive or the Short Read Archive (SRA) prior to the submission of the assemblies.
This site provides access to complete, annotated genomes from bacteria and archaea (present in the European Nucleotide Archive) through the Ensembl graphical user interface (genome browser). Ensembl Bacteria contains genomes from annotated INSDC records that are loaded into Ensembl multi-species databases, using the INSDC annotation import pipeline.