Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 44 result(s)
Country
The database contains numerical data on atomic and molecular collisions, radiative processes and various other material properties of specific use in fusion and plasma research. Searching the database produces bibliographic results linking to the research paper containing the data of interest. Searches can be performed based on a variety of parameters including reactants, surface of interest, data type; or by date, journal or author.
The ASTER Project consists of two parts, each having a Japanese and a U.S. component. Mission operations are split between Japan Space Systems (J-spacesystems) and the Jet Propulsion Laboratory (JPL) in the U.S. J-spacesystems oversees monitoring instrument performance and health, developing the daily schedule command sequence, processing Level 0 data to Level 1, and providing higher level data processing, archiving, and distribution. The JPL ASTER project provides scheduling support for U.S. investigators, calibration and validation of the instrument and data products, coordinating the U.S. Science Team, and maintaining the science algorithms. The joint Japan/U.S. ASTER Science Team has about 40 scientists and researchers. Data access via NASA Reverb, ASTER Japan site, earth explorer, GloVis,GDEx and LP DAAC. See here https://asterweb.jpl.nasa.gov/data.asp. In Addition data are availabe through the newly implemented ASTER Volcano archive (AVA) https://ava.jpl.nasa.gov/ .
Country
The interdisciplinary data platform INPTDAT provides easy access to research data and information from all fields of applied plasma physics and plasma medicine. It aims to support the findability, accessibility, interoperability and re-use of data for the low-temperature plasma physics community.
Content type(s)
The Network for the Detection of Atmospheric Composition Change (NDACC), a major contributor to the worldwide atmospheric research effort, consists of a set of globally distributed research stations providing consistent, standardized, long-term measurements of atmospheric trace gases, particles, spectral UV radiation reaching the Earth's surface, and physical parameters, centered around the following priorities.
Country
SMOKA provides public science data obtained at Subaru Telescope, 188cm telescope at Okayama Astrophysical Observatory, 105cm Schmidt telescope at Kiso Observatory (University of Tokyo), MITSuME, and KANATA Telescope at Higashi-Hiroshima Observatory. It is intended mainly for astronomical researchers.
Interface to Los Alamos Atomic Physics Codes is your gateway to the set of atomic physics codes developed at the Los Alamos National Laboratory. The well known Hartree-Fock method of R.D. Cowan, developed at Group home page of the Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated.
The Innsbruck Dissociative Electron Attachment (DEA) DataBase node holds relative cross sections for dissociative electron attachment processes of the form: AB + e– –> A– + B, where AB is a molecule. It hence supports querying by various identifiers for molecules and atoms, such as chemical names, stoichiometric formulae, InChI (-keys) and CAS registry numbers. These identifiers are searched both in products and reactants of the processes. It then returns XSAMS files describing the processes found including numeric values for the relative cross sections of the processes. Alternatively, cross sections can be exported as plain ASCII files.
The EXFOR library contains an extensive compilation of experimental nuclear reaction data. Neutron reactions have been compiled systematically since the discovery of the neutron, while charged particle and photon reactions have been covered less extensively.
Chapman University Digital Commons is an open access digital repository and publication platform designed to collect, store, index, and provide access to the scholarly and creative output of Chapman University faculty, students, staff, and affiliates. In it are faculty research papers and books, data sets, outstanding student work, audiovisual materials, images, special collections, and more, all created by members of or owned by Chapman University. The datasets are listed in a separate collection.
The Solar Dynamics Observatory (SDO) studies the solar atmosphere on small scales of space and time, in multiple wavelengths. This is a searchable database of all SDO data, including citizen scientist images, space weather and near real time data, and helioseismology data.
This is a compilation of approximately 923,000 allowed, intercombination and forbidden atomic transitions with wavelengths in the range from 0.5 Å to 1000 µm. It's primary intention is to allow the identification of observed atomic absorption or emission features. The wavelengths in this list are all calculated from the difference between the energy of the upper and lower level of the transition. No attempt has been made to include observed wavelengths. Most of the atomic energy level data have been taken from the Atomic Spectra Database provided by the National Institute of Standards and Technology (NIST).
Online materials database (known as PAULING FILE project) with nearly 2 million entries: physical properties, crystal structures, phase diagrams, available via API, ready for modern data-intensive applications. The source of these entries are about 0.5M peer-reviewed publications in materials science, processed during the last 30 years by an international team of PhD editors. The results are presented online with a quick search interface. The basic access is provided for free.
Country
The International Network of Nuclear Reaction Data Centres (NRDC) constitutes a worldwide cooperation of nuclear data centres under the auspices of the International Atomic Energy Agency. The Network was established to coordinate the world-wide collection, compilation and dissemination of nuclear reaction data.
Country
The CosmoSim database provides results from cosmological simulations performed within different projects: the MultiDark and Bolshoi project, and the CLUES project. The CosmoSim webpage provides access to several cosmological simulations, with a separate database for each simulation. Simulations overview: https://www.cosmosim.org/cms/simulations/simulations-overview/ . CosmoSim is a contribution to the German Astrophysical Virtual Observatory.
Constellation is a digital object identifier (DOI) based science network for supercomputing data. Constellation makes it possible for OLCF researchers to obtain DOIs for large data collections by tying them together with the associated resources and processes that went into the production of the data (e.g., jobs, collaborators, projects), using a scalable database. It also allows the annotation of the scientific conduct with rich metadata, and enables the cataloging and publishing of the artifacts for open access, aiding in scalable data discovery. OLCF users can use the DOI service to publish datasets even before the publication of the paper, and retain key data even after project expiration. From a center standpoint, DOIs enable the stewardship of data, and better management of the scratch and archival storage.
This data repository contains the experimental data produced at the ISIS Neutron and Muon Source (https://www.isis.stfc.ac.uk/Pages/home.aspx/) in the UK Science and Technology Facilities Council (STFC, https://www.ukri.org/councils/stfc/). The repository contains the open data as well as the data under embargoed that can be accessed by the data producers.
Network Repository is the first interactive data repository for graph and network data. It hosts graph and network datasets, containing hundreds of real-world networks and benchmark datasets. Unlike other data repositories, Network Repository provides interactive analysis and visualization capabilities to allow researchers to explore, compare, and investigate graph data in real-time on the web.
STARK-B is a database of calculated widths and shifts of isolated lines of atoms and ions due to electron and ion collisions. This database is devoted to modeling and spectroscopic diagnostics of stellar atmospheres and envelopes. In addition, it is also devoted to laboratory plasmas, laser equipments and technological plasmas. So, the domain of temperatures and densities covered by the tables is wide and depends on the ionization degree of the considered ion. The temperature can vary from several thousands for neutral atoms to several hundred thousands of Kelvin for highly charged ions. The electron or ion density can vary from 1012 (case of stellar atmospheres) to several 1019cm-3 (some white dwarfs and some laboratory plasmas).
The Astrophysics Source Code Library (ASCL) is a free online registry for source codes of interest to astronomers and astrophysicists and lists codes that have been used in research that has appeared in, or been submitted to, peer-reviewed publications. The ASCL is citable by using the unique ascl ID assigned to each code. The ascl ID can be used to link to the code entry by prefacing the number with ascl.net (i.e., ascl.net/1201.001).