Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 42 result(s)
Country
InTOR is the institutional digital repository of the Institute of Virology, Vaccines and Sera “Torlak”. It provides open access to publications and other research outputs resulting from the projects implemented by the Institute of Virology, Vaccines and Sera “Torlak”. The software platform of the repository is adapted to the modern standards applied in the dissemination of scientific publications and is compatible with international infrastructure in this field.
Country
The Genome Warehouse (GWH) is a public repository housing genome-scale data for a wide range of species and delivering a series of web services for genome data submission, storage, release and sharing.
Country
The ICES Data Repository consists of record-level, coded and linkable health data sets. It encompasses much of the publicly funded administrative health services records for the Ontario population eligible for universal health coverage since 1986 and is capable of integrating research-specific data, registries and surveys. Currently, the repository includes health service records for as many as 13 million people. Files in the ICES Data Repository are described in the Data Dictionary. This includes ICES General Use Data, as well as ICES Controlled Use Data. Datasets obtained by ICES for specific project(s) (project-specific data) are not described in the Data Dictionary. The ICES Data Dictionary is an essential resource for anyone doing research at ICES. The information in this Data Dictionary is almost entirely based on the metadata belonging to the datasets described.
Country
<<<!!!<<< This repository is no longer available. HeRBi is now part of the European Zebrafish Resource Center https://www.re3data.org/repository/r3d100011105. Data from HeRBi: https://www.ezrc.kit.edu/search_menu.php >>>!!!>>>
BEI Resources was established by the National Institute of Allergy and Infectious Diseases (NIAID) to provide reagents, tools and information for studying Category A, B, and C priority pathogens, emerging infectious disease agents, non-pathogenic microbes and other microbiological materials of relevance to the research community. BEI Resources acquires authenticates, and produces reagents that scientists need to carry out basic research and develop improved diagnostic tests, vaccines, and therapies. By centralizing these functions within BEI Resources, access to and use of these materials in the scientific community is monitored and quality control of the reagents is assured
CryptoDB is an integrated genomic and functional genomic database for the parasite Cryptosporidium and other related genera. CryptoDB integrates whole genome sequence and annotation along with experimental data and environmental isolate sequences provided by community researchers. The database includes supplemental bioinformatics analyses and a web interface for data-mining.
The Coronavirus Antiviral Research Database is designed to expedite the development of SARS-CoV-2 antiviral therapy. It will benefit global coronavirus drug development efforts by (1) promoting uniform reporting of experimental results to facilitate comparisons between different candidate antiviral compounds; (2) identifying gaps in coronavirus antiviral drug development research; (3) helping scientists, clinical investigators, public health officials, and funding agencies prioritize the most promising compounds and repurposed drugs for further development; (4) providing an objective, evidenced-based, source of information for the public; and (5) creating a hub for the exchange of ideas among coronavirus researchers whose feedback is sought and welcomed. By comprehensively reviewing all published laboratory, animal model, and clinical data on potential coronavirus therapies, the Database makes it unlikely that promising treatment approaches will be overlooked. In addition, by making it possible to compare the underlying data associated with competing treatment strategies, stakeholders will be better positioned to prioritize the most promising anti-coronavirus compounds for further development.
The Antimicrobial Peptide Database (APD) was originally created by a graduate student, Zhe Wang, as his master's thesis in the laboratory of Dr. Guangshun Wang. The project was initiated in 2002 and the first version of the database was open to the public in August 2003. It contained 525 peptide entries, which can be searched in multiple ways, including APD ID, peptide name, amino acid sequence, original location, PDB ID, structure, methods for structural determination, peptide length, charge, hydrophobic content, antibacterial, antifungal, antiviral, anticancer, and hemolytic activity. Some results of this bioinformatics tool were reported in the 2004 database paper. The peptide data stored in the APD were gleaned from the literature (PubMed, PDB, Google, and Swiss-Prot) manually in over a decade.
IMGT/mAb-DB provides a unique expertised resource on monoclonal antibodies (mAbs) with diagnostic or therapeutic indications, fusion proteins for immune applications (FPIA), composite proteins for clinical applications (CPCA) and relative proteins of the immune system (RPI) with clinical indications.
AmoebaDB belongs to the EuPathDB family of databases and is an integrated genomic and functional genomic database for Entamoeba and Acanthamoeba parasites. In its first iteration (released in early 2010), AmoebaDB contains the genomes of three Entamoeba species (see below). AmoebaDB integrates whole genome sequence and annotation and will rapidly expand to include experimental data and environmental isolate sequences provided by community researchers . The database includes supplemental bioinformatics analyses and a web interface for data-mining.
IEDB offers easy searching of experimental data characterizing antibody and T cell epitopes studied in humans, non-human primates, and other animal species. Epitopes involved in infectious disease, allergy, autoimmunity, and transplant are included. The IEDB also hosts tools to assist in the prediction and analysis of B cell and T cell epitopes.
Giardia lamblia is a significant, environmentally transmitted, human pathogen and an amitochondriate protist. It is a major contributor to the enormous worldwide burden of human diarrheal diseases, yet the basic biology of this parasite is not well understood. No virulence factor has been identified. The Giardia lamblia genome contains only 12 million base pairs distributed onto five chromosomes. Its analysis promises to provide insights about the origins of nuclear genome organization, the metabolic pathways used by parasitic protists, and the cellular biology of host interaction and avoidance of host immune systems. Since the divergence of Giardia lamblia lies close to the transition between eukaryotes and prokaryotes in universal ribosomal RNA phylogenies, it is a valuable, if not unique, model for gaining basic insights into genetic innovations that led to formation of eukaryotic cells. In evolutionary terms, the divergence of this organism is at least twice as ancient as the common ancestor for yeast and man. A detailed study of its genome will provide insights into an early evolutionary stage of eukaryotic chromosome organization as well as other aspects of the prokaryotic / eukaryotic divergence.
GENCODE is a scientific project in genome research and part of the ENCODE (ENCyclopedia Of DNA Elements) scale-up project. The GENCODE consortium was initially formed as part of the pilot phase of the ENCODE project to identify and map all protein-coding genes within the ENCODE regions (approx. 1% of Human genome). Given the initial success of the project, GENCODE now aims to build an “Encyclopedia of genes and genes variants” by identifying all gene features in the human and mouse genome using a combination of computational analysis, manual annotation, and experimental validation, and annotating all evidence-based gene features in the entire human genome at a high accuracy.
>>>>!!!!<<<< AspGD data are being integrated into FungiDB. Please click here for additional details http://fungidb.org/ . Discussion of how to maximize the value of FungiDB for the Aspergillus research community will be a major topic at the upcoming AsperFest12 meeting at Asilomar (March 16-17, 2015). >>>>!!!!<<<< AspGD is an organized collection of genetic and molecular biological information about the filamentous fungi of the genus Aspergillus. Among its many species, the genus contains an excellent model organism (A. nidulans, or its teleomorph Emericella nidulans), an important pathogen of the immunocompromised (A. fumigatus), an agriculturally important toxin producer (A. flavus), and two species used in industrial processes (A. niger and A. oryzae). AspGD contains information about genes and proteins of multiple Aspergillus species; descriptions and classifications of their biological roles, molecular functions, and subcellular localizations; gene, protein, and chromosome sequence information; tools for analysis and comparison of sequences; and links to literature information; as well as a multispecies comparative genomics browser tool (Sybil) for exploration of orthology and synteny across multiple sequenced Aspergillus species.
The long-term vision of the NMDC is to support microbiome data exploration through a sustainable data discovery platform that promotes open science and shared-ownership across a broad and diverse community of researchers, funders, publishers, and societies. The NMDC is developing a distributed data infrastructure while engaging with the research community to enable multidisciplinary and FAIR microbiome data.
Country
<<<!!!<<< 2019-12-23: the repository is offline >>>!!!>>> Introduction of genome-scale metabolic network: The completion of genome sequencing and subsequent functional annotation for a great number of species enables the reconstruction of genome-scale metabolic networks. These networks, together with in silico network analysis methods such as the constraint based methods (CBM) and graph theory methods, can provide us systems level understanding of cellular metabolism. Further more, they can be applied to many predictions of real biological application such as: gene essentiality analysis, drug target discovery and metabolic engineering
Content type(s)
Country
>>>!!!<<< This repository is no longer available >>>!!!<<< Marine Microbial Database of India is an initiative of CSIR National Institute of Oceanography (NIO). It is supported by Council of Scientific and Industrial Research (CSIR) and managed by Biodiversity Informatics Group (BIG), Bioinformatics Centre of the NIO. It contains records about 1,814 marine microbes. Each record provides information on microbe’s location, habitat, importance (of the organism), threats (to the organism). The database also provides a Taxonomic Hierarchy and Scientific Name Index.
>>>!!!<<<2019-02-19: The repository is no longer available>>>!!!<<< >>>!!!<<<Data is archived at ChemSpider https://www.chemspider.com/Search.aspx?dsn=UsefulChem and https://www.chemspider.com/Search.aspx?dsn=Usefulchem Group Bradley Lab >>>!!!<<< see more information at the Standards tab at 'Remarks'
Country
The Universitat de Barcelona Digital Repository is an institutional resource containing open-access digital versions of publications related to the teaching, research and institutional activities of the UB's teaching staff and other members of the university community, including research data.
This is CSDB version 1 merged from Bacterial (BCSDB) and Plant&Fungal (PFCSDB) databases. This database aims at provision of structural, bibliographic, taxonomic, NMR spectroscopic and other information on glycan and glycoconjugate structures of prokaryotic, plant and fungal origin. It has been merged from the Bacterial and Plant&Fungal Carbohydrate Structure Databases (BCSDB+PFCSDB). The key points of this service are: High coverage. The coverage for bacteria (up to 2016) and archaea (up to 2016) is above 80%. Similar coverage for plants and fungi is expected in the future. The database is close to complete up to 1998 for plants, and up to 2006 for fungi. Data quality. High data quality is achieved by manual curation using original publications which is assisted by multiple automatic procedures for error control. Errors present in publications are reported and corrected, when possible. Data from other databases are verified on import. Detailed annotations. Structural data are supplied with extended bibliography, assigned NMR spectra, taxon identification including strains and serogroups, and other information if available in the original publication. Services. CSDB serves as a platform for a number of computational services tuned for glycobiology, such as NMR simulation, automated structure elucidation, taxon clustering, 3D molecular modeling, statistical processing of data etc. Integration. CSDB is cross-linked to other glycoinformatics projects and NCBI databases. The data are exportable in various formats, including most widespread encoding schemes and records using GlycoRDF ontology. Free web access. Users can access the database for free via its web interface (see Help). The main source of data is retrospective literature analysis. About 20% of data were imported from CCSD (Carbbank, University of Georgia, Athens; structures published before 1996) with subsequent manual curation and approval. The current coverage is displayed in red on the top of the left menu. The time lag between the publication of new data and their deposition into CSDB is ca. 1 year. In the scope of bacterial carbohydrates, CSDB covers nearly all structures of this origin published up to 2016. Prokaryotic, plant and fungal means that a glycan was found in the organism(s) belonging to these taxonomic domains or was obtained by modification of those found in them. Carbohydrate means a structure composed of any residues linked by glycosidic, ester, amidic, ketal, phospho- or sulpho-diester bonds in which at least one residue is a sugar or its derivative.