Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 6 result(s)
VectorBase provides data on arthropod vectors of human pathogens. Sequence data, gene expression data, images, population data, and insecticide resistance data for arthropod vectors are available for download. VectorBase also offers genome browser, gene expression and microarray repository, and BLAST searches for all VectorBase genomes. VectorBase Genomes include Aedes aegypti, Anopheles gambiae, Culex quinquefasciatus, Ixodes scapularis, Pediculus humanus, Rhodnius prolixus. VectorBase is one the Bioinformatics Resource Centers (BRC) projects which is funded by National Institute of Allergy and Infectious Diseases (NAID).
FungiDB belongs to the EuPathDB family of databases and is an integrated genomic and functional genomic database for the kingdom Fungi. FungiDB was first released in early 2011 as a collaborative project between EuPathDB and the group of Jason Stajich (University of California, Riverside). At the end of 2015, FungiDB was integrated into the EuPathDB bioinformatic resource center. FungiDB integrates whole genome sequence and annotation and also includes experimental and environmental isolate sequence data. The database includes comparative genomics, analysis of gene expression, and supplemental bioinformatics analyses and a web interface for data-mining.
WikiPathways was established to facilitate the contribution and maintenance of pathway information by the biology community. WikiPathways is an open, collaborative platform dedicated to the curation of biological pathways. WikiPathways thus presents a new model for pathway databases that enhances and complements ongoing efforts, such as KEGG, Reactome and Pathway Commons. Building on the same MediaWiki software that powers Wikipedia, we added a custom graphical pathway editing tool and integrated databases covering major gene, protein, and small-molecule systems. The familiar web-based format of WikiPathways greatly reduces the barrier to participate in pathway curation. More importantly, the open, public approach of WikiPathways allows for broader participation by the entire community, ranging from students to senior experts in each field. This approach also shifts the bulk of peer review, editorial curation, and maintenance to the community.
The Maize Genetics and Genomics Database focuses on collecting data related to the crop plant and model organism Zea mays. The project's goals are to synthesize, display, and provide access to maize genomics and genetics data, prioritizing mutant and phenotype data and tools, structural and genetic map sets, and gene models. MaizeGDB also aims to make the Maize Newsletter available, and provide support services to the community of maize researchers. MaizeGDB is working with the Schnable lab, the Panzea project, The Genome Reference Consortium, and iPlant Collaborative to create a plan for archiving, dessiminating, visualizing, and analyzing diversity data. MMaizeGDB is short for Maize Genetics/Genomics Database. It is a USDA/ARS funded project to integrate the data found in MaizeDB and ZmDB into a single schema, develop an effective interface to access this data, and develop additional tools to make data analysis easier. Our goal in the long term is a true next-generation online maize database.aize genetics and genomics database.
ToxoDB is a genome database for the genus Toxoplasma, a set of single-celled eukaryotic pathogens that cause human and animal diseases, including toxoplasmosis.
Giardia lamblia is a significant, environmentally transmitted, human pathogen and an amitochondriate protist. It is a major contributor to the enormous worldwide burden of human diarrheal diseases, yet the basic biology of this parasite is not well understood. No virulence factor has been identified. The Giardia lamblia genome contains only 12 million base pairs distributed onto five chromosomes. Its analysis promises to provide insights about the origins of nuclear genome organization, the metabolic pathways used by parasitic protists, and the cellular biology of host interaction and avoidance of host immune systems. Since the divergence of Giardia lamblia lies close to the transition between eukaryotes and prokaryotes in universal ribosomal RNA phylogenies, it is a valuable, if not unique, model for gaining basic insights into genetic innovations that led to formation of eukaryotic cells. In evolutionary terms, the divergence of this organism is at least twice as ancient as the common ancestor for yeast and man. A detailed study of its genome will provide insights into an early evolutionary stage of eukaryotic chromosome organization as well as other aspects of the prokaryotic / eukaryotic divergence.