Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 3 result(s)
Country
OzFlux provides micro-meteorological measurements from over 500 stations to provide data for atmospheric model testing specific to exchanges of carbon, water vapor and energy between terrestrial ecosystems and the atmosphere.
Country
BLLAST is a research programme aimed at exploring the late afternoon transition of the atmospheric boundary layer. The late afternoon period of the diurnal cycle of the boundary layer is poorly understood. This is yet an important transition period that impacts the transport and dillution of water vapour and trace species. The main questions adressed by the project are: - How the turbulence activity fades when heating by the surface decreases? - What is the impact on the transport of chemical species? - How relevant processes can be represented in numerical models? To answer all these questions, a field campaign was carried out during the summer of 2011 (from June 14 to July 8). Many observation systems were then deployed and operated by research teams coming from France and abroad. They were spanning a large spectrum of space and time scales in order to achieve a comprehensive description of the boundary layer processes. The observation strategy consisted in intensifying the operations in the late afternoon with tethered balloons, resarch aircrafts and UAVs.
PAGER (Prompt Assessment of Global Earthquakes for Response) is an automated system that produces content concerning the impact of significant earthquakes around the world, informing emergency responders, government and aid agencies, and the media of the scope of the potential disaster. PAGER rapidly assesses earthquake impacts by comparing the population exposed to each level of shaking intensity with models of economic and fatality losses based on past earthquakes in each country or region of the world. Earthquake alerts – which were formerly sent based only on event magnitude and location, or population exposure to shaking – now will also be generated based on the estimated range of fatalities and economic losses. PAGER uses these earthquake parameters to calculate estimates of ground shaking by using the methodology and software developed for ShakeMaps. ShakeMap sites provide near-real-time maps of ground motion and shaking intensity following significant earthquakes. These maps are used by federal, state, and local organizations, both public and private, for post-earthquake response and recovery, public and scientific information, as well as for preparedness exercises and disaster planning.