Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 13 result(s)
Country
PLMD (Protein Lysine Modifications Database) is an online data resource specifically designed for protein lysine modifications (PLMs). The PLMD 3.0 database was extended and adapted from CPLA 1.0 (Compendium of Protein Lysine Acetylation) database and CPLM 2.0 (Compendium of Protein Lysine Modifications) database
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
This Animal Quantitative Trait Loci (QTL) database (Animal QTLdb) is designed to house all publicly available QTL and trait mapping data (i.e. trait and genome location association data; collectively called "QTL data" on this site) on livestock animal species for easily locating and making comparisons within and between species. New database tools are continuely added to align the QTL and association data to other types of genome information, such as annotated genes, RH / SNP markers, and human genome maps. Besides the QTL data from species listed below, the QTLdb is open to house QTL/association date from other animal species where feasible. Note that the JAS along with other journals, now require that new QTL/association data be entered into a QTL database as part of their publication requirements.
The figshare service for the University of Sheffield allows researchers to store, share and publish research data. It helps the research data to be accessible by storing Metadata alongside datasets. Additionally, every uploaded item receives a Digital Object identifier (DOI), which allows the data to be citable and sustainable. If there are any ethical or copyright concerns about publishing a certain dataset, it is possible to publish the metadata associated with the dataset to help discoverability while sharing the data itself via a private channel through manual approval.
The IMPC is a confederation of international mouse phenotyping projects working towards the agreed goals of the consortium: To undertake the phenotyping of 20,000 mouse mutants over a ten year period, providing the first functional annotation of a mammalian genome. Maintain and expand a world-wide consortium of institutions with capacity and expertise to produce germ line transmission of targeted knockout mutations in embryonic stem cells for 20,000 known and predicted mouse genes. Test each mutant mouse line through a broad based primary phenotyping pipeline in all the major adult organ systems and most areas of major human disease. Through this activity and employing data annotation tools, systematically aim to discover and ascribe biological function to each gene, driving new ideas and underpinning future research into biological systems; Maintain and expand collaborative “networks” with specialist phenotyping consortia or laboratories, providing standardized secondary level phenotyping that enriches the primary dataset, and end-user, project specific tertiary level phenotyping that adds value to the mammalian gene functional annotation and fosters hypothesis driven research; and Provide a centralized data centre and portal for free, unrestricted access to primary and secondary data by the scientific community, promoting sharing of data, genotype-phenotype annotation, standard operating protocols, and the development of open source data analysis tools. Members of the IMPC may include research centers, funding organizations and corporations.
AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals’ transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated.
The EZRC at KIT houses the largest experimental fish facility in Europe with a capacity of more than 300,000 fish. Zebrafish stocks are maintained mostly as frozen sperm. Frequently requested lines are also kept alive as well as a selection of wildtype strains. Several thousand mutations in protein coding genes generated by TILLING in the Stemple lab of the Sanger Centre, Hinxton, UK and lines generated by ENU mutagenesis by the Nüsslein-Volhard lab in addition to transgenic lines and mutants generated by KIT groups or brought in through collaborations. We also accept submissions on an individual basis and ship fish upon request to PIs in Europe and elsewhere. EZRC also provides screening services and technologies such as imaging and high-throughput sequencing. Key areas include automation of embryo handling and automated image acquisition and processing. Our platform also involves the development of novel microscopy techniques (e.g. SPIM, DSLM, robotic macroscope) to permit high-resolution, real-time imaging in 4D. By association with the ComPlat platform, we can support also chemical screens and offer libraries with up to 20,000 compounds in total for external users. As another service to the community the EZRC provides plasmids (cDNAs, transgenes, Talen, Crispr/cas9) maintained by the Helmholtz repository of Bioparts (HERBI) to the scientific community. In addition the fish facility keeps a range of medaka stocks, maintained by the Loosli group.
Ag Data Commons provides access to a wide variety of open data relevant to agricultural research. We are a centralized repository for data already on the web, as well as for new data being published for the first time. While compliance with the U.S. Federal public access and open data directives is important, we aim to surpass them. Our goal is to foster innovative data re-use, integration, and visualization to support bigger, better science and policy.
GeneLab is an interactive, open-access resource where scientists can upload, download, store, search, share, transfer, and analyze omics data from spaceflight and corresponding analogue experiments. Users can explore GeneLab datasets in the Data Repository, analyze data using the Analysis Platform, and create collaborative projects using the Collaborative Workspace. GeneLab promises to facilitate and improve information sharing, foster innovation, and increase the pace of scientific discovery from extremely rare and valuable space biology experiments. Discoveries made using GeneLab have begun and will continue to deepen our understanding of biology, advance the field of genomics, and help to discover cures for diseases, create better diagnostic tools, and ultimately allow astronauts to better withstand the rigors of long-duration spaceflight. GeneLab helps scientists understand how the fundamental building blocks of life itself – DNA, RNA, proteins, and metabolites – change from exposure to microgravity, radiation, and other aspects of the space environment. GeneLab does so by providing fully coordinated epigenomics, genomics, transcriptomics, proteomics, and metabolomics data alongside essential metadata describing each spaceflight and space-relevant experiment. By carefully curating and implementing best practices for data standards, users can combine individual GeneLab datasets to gain new, comprehensive insights about the effects of spaceflight on biology. In this way, GeneLab extends the scientific knowledge gained from each biological experiment conducted in space, allowing scientists from around the world to make novel discoveries and develop new hypotheses from these priceless data.
Country
The Pig Expression Data Explorer (PEDE) database system stores full-length cDNA libraries of swine data accesible via keyword and ID searches. Data is publically available, and may specifically interest genetic researchers interested in disease sucsceptibly, and major and minor porcine specific antigens.
The Ensembl project produces genome databases for vertebrates and other eukaryotic species. Ensembl is a joint project between the European Bioinformatics Institute (EBI) and the Wellcome Trust Sanger Institute (WTSI) to develop a software system that produces and maintains automatic annotation on selected genomes.The Ensembl project was started in 1999, some years before the draft human genome was completed. Even at that early stage it was clear that manual annotation of 3 billion base pairs of sequence would not be able to offer researchers timely access to the latest data. The goal of Ensembl was therefore to automatically annotate the genome, integrate this annotation with other available biological data and make all this publicly available via the web. Since the website's launch in July 2000, many more genomes have been added to Ensembl and the range of available data has also expanded to include comparative genomics, variation and regulatory data. Ensembl is a joint project between European Bioinformatics Institute (EBI), an outstation of the European Molecular Biology Laboratory (EMBL), and the Wellcome Trust Sanger Institute (WTSI). Both institutes are located on the Wellcome Trust Genome Campus in Hinxton, south of the city of Cambridge, United Kingdom.