Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 179 result(s)
The Space Physics Data Facility (SPDF) leads in the design and implementation of unique multi-mission and multi-disciplinary data services and software to strategically advance NASA's solar-terrestrial program, to extend our science understanding of the structure, physics and dynamics of the Heliosphere of our Sun and to support the science missions of NASA's Heliophysics Great Observatory. Major SPDF efforts include multi-mission data services such as Heliophysics Data Portal (formerly VSPO), CDAWeb and CDAWeb Inside IDL,and OMNIWeb Plus (including COHOWeb, ATMOWeb, HelioWeb and CGM) , science planning and orbit services such as SSCWeb, data tools such as the CDF software and tools, and a range of other science and technology research efforts. The staff supporting SPDF includes scientists and information technology experts.
The Mikulski Archive for Space Telescopes (MAST) is a NASA funded project to support and provide to the astronomical community a variety of astronomical data archives, with the primary focus on scientifically related data sets in the optical, ultraviolet, and near-infrared parts of the spectrum. MAST is located at the Space Telescope Science Institute (STScI).
The Infrared Space Observatory (ISO) is designed to provide detailed infrared properties of selected Galactic and extragalactic sources. The sensitivity of the telescopic system is about one thousand times superior to that of the Infrared Astronomical Satellite (IRAS), since the ISO telescope enables integration of infrared flux from a source for several hours. Density waves in the interstellar medium, its role in star formation, the giant planets, asteroids, and comets of the solar system are among the objects of investigation. ISO was operated as an observatory with the majority of its observing time being distributed to the general astronomical community. One of the consequences of this is that the data set is not homogeneous, as would be expected from a survey. The observational data underwent sophisticated data processing, including validation and accuracy analysis. In total, the ISO Data Archive contains about 30,000 standard observations, 120,000 parallel, serendipity and calibration observations and 17,000 engineering measurements. In addition to the observational data products, the archive also contains satellite data, documentation, data of historic aspects and externally derived products, for a total of more than 400 GBytes stored on magnetic disks. The ISO Data Archive is constantly being improved both in contents and functionality throughout the Active Archive Phase, ending in December 2006.
The Lunar Orbiter Photographic Atlas of the Moon by Bowker and Hughes (NASA SP-206) is considered the definitive reference manual to the global photographic coverage of the Moon. The images contained within the atlas are excellent for studying lunar morphology because they were obtained at low to moderate Sun angles. The digital Lunar Orbiter Atlas of the Moon is a reproduction of the 675 plates contained in Bowker and Hughes. The digital archive, however, offers many improvements upon its original hardbound predecessor. Multiple search capabilities were added to the database to expedite locating images and features of interest. For accuracy and usability, surface feature information has been updated and improved. Lastly, to aid in feature identification, a companion image containing feature annotation has been included. The symbols on the annotated overlays, however, should only be used as locators and not for precise measurements. More detailed information about the digital archive process can be read in abstracts presented at the 30th and 31st Lunar and Planetary Science Conferences.
The Chandra Data Archive (CDA) plays a central role in the operation of the Chandra X-ray Center (CXC) by providing support to the astronomical community in accessing Chandra data. Its primary role is one of storage and distribution of all data products including those that users of the observatory need to perform their scientific studies using Chandra data. The CDA offers access to digital archives through powerful query engines, including VO-compliant interfaces. The CDA also serves as a permanent storage repository of contributed data products by authors who have processed images or other pertinent and valuable datasets that are essential to their publications.
The PDS archives and distributes scientific data from NASA planetary missions, astronomical observations, and laboratory measurements. The PDS is sponsored by NASA's Science Mission Directorate. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research
NED is a comprehensive database of multiwavelength data for extragalactic objects, providing a systematic, ongoing fusion of information integrated from hundreds of large sky surveys and tens of thousands of research publications. The contents and services span the entire observed spectrum from gamma rays through radio frequencies. As new observations are published, they are cross- identified or statistically associated with previous data and integrated into a unified database to simplify queries and retrieval. Seamless connectivity is also provided to data in NASA astrophysics mission archives (IRSA, HEASARC, MAST), to the astrophysics literature via ADS, and to other data centers around the world.
Country
Chinese Astronomical Data Center (CAsDC) is the scientific data service and infrastructure of National Astronomical Observatories, Chinese Academy of Sciences (NAOC), which is a key service from the China-VO. We are aiming to meet user requirements for astronomical research and education. The CAsDC is based on World Data Center (WDC) for Astronomy, which is hosted at NAOC and has been providing data services to users since its initiation in 1980s. In 2012, the CAsDC became a regular member of the new created World Data System.
The ACE Science Center (ASC) serves to facilitate collaborative work on data from the Advanced Composition Explorer (ACE) spacecraft and to ensure that those data are properly archived and publicly available. The collaborators served are not limited to ACE project-funded investigators.
The Vienna Atomic Line Database (VALD) is a collection of atomic and molecular transition parameters of astronomical interest. VALD offers tools for selecting subsets of lines for typical astrophysical applications: line identification, preparing for spectroscopic observations, chemical composition and radial velocity measurements, model atmosphere calculations etc.
!!! We will terminate ASTER Products Distribution Service in March 2016 although we have been providing ASTER Products since November 20, 2000. !!! ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) is the high efficiency optical imager which covers a wide spectral region from the visible to the thermal infra-red by 14 spectral bands. ASTER acquires data which can be used in various fields in earth science. ASTER was launched from Vandenberg Air Force Base in California, USA in 1999 aboard the Terra, which is the first satellite of the EOS Project. The purpose of ASTER project is to make contributions to extend the understanding of local and regional phenomena on the Earth surface and its atmosphere. The followings are ASTER related information, which includes ASTER instrument, ASTER Ground Data System, ASTER Science Activities, ASTER Data Distribution and so on. ASTER Search provides services to search and order ASTER data products on the website.
BSRN is a project of the Radiation Panel (now the Data and Assessment Panel) from the Global Energy and Water Cycle Experiment (GEWEX) under the umbrella of the World Climate Research Programme (WCRP). It is the global baseline network for surface radiation for the Global limate Observing System (GCOS), contributing to the Global Atmospheric Watch (GAW), and forming a ooperative network with the Network for the Detection of Atmospheric Composition Change NDACC).
The Ozone Mapping and Profiler Suite measures the ozone layer in our upper atmosphere—tracking the status of global ozone distributions, including the ‘ozone hole.’ It also monitors ozone levels in the troposphere, the lowest layer of our atmosphere. OMPS extends out 40-year long record ozone layer measurements while also providing improved vertical resolution compared to previous operational instruments. Closer to the ground, OMPS’s measurements of harmful ozone improve air quality monitoring and when combined with cloud predictions; help to create the Ultraviolet Index, a guide to safe levels of sunlight exposure. OMPS has two sensors, both new designs, composed of three advanced hyperspectralimaging spectrometers.The three spectrometers: a downward-looking nadir mapper, nadir profiler and limb profiler. The entire OMPS suite currently fly on board the Suomi NPP spacecraft and are scheduled to fly on the JPSS-2 satellite mission. NASA will provide the OMPS-Limb profiler.
Dataverse to host followup observations of galaxy clusters identified in South Pole Telescope SZ Surveys. This includes: 1) GMOS spectroscopy of low to moderate redshift galaxy clusters taken as a part of NOAO Large Survey Program 11A-0034 (PI: Christopher Stubbs).
Galaxies, made up of billions of stars like our Sun, are the beacons that light up the structure of even the most distant regions in space. Not all galaxies are alike, however. They come in very different shapes and have very different properties; they may be large or small, old or young, red or blue, regular or confused, luminous or faint, dusty or gas-poor, rotating or static, round or disky, and they live either in splendid isolation or in clusters. In other words, the universe contains a very colourful and diverse zoo of galaxies. For almost a century, astronomers have been discussing how galaxies should be classified and how they relate to each other in an attempt to attack the big question of how galaxies form. Galaxy Zoo (Lintott et al. 2008, 2011) pioneered a novel method for performing large-scale visual classifications of survey datasets. This webpage allows anyone to download the resulting GZ classifications of galaxies in the project.
The GOES Space Environment Monitor archive is an important component of the National Space Weather Program --a interagency program to provide timely and reliable space environment observations and forecasts. GOES satellites carry onboard a Space Environment Monitor subsystem that measures X-rays, Energetic Particles and Magnetic Field at the Spacecraft.
Atomic and Ionic UV/VUV Linelist . This facility permits selective searches of some atomic data compliled by R. L. Kelly. The data provided are: - vacuum wavelength [in nm], - intensity estimate, - E [in cm-1], j, and configuration for lower and upper levels, - multiplet (where available), - reference numbers of the sources of the data.
HyperLeda is an information system for astronomy: It consists in a database and tools to process that data according to the user's requirements. The scientific goal which motivates the development of HyperLeda is the study of the physics and evolution of galaxies. LEDA was created more than 20 years ago, in 1983, and became HyperLeda after the merging with Hypercat in 2000
We present the MUSE-Wide survey, a blind, 3D spectroscopic survey in the CANDELS/GOODS-S and CANDELS/COSMOS regions. Each MUSE-Wide pointing has a depth of 1 hour and hence targets more extreme and more luminous objects over 10 times the area of the MUSE-Deep fields (Bacon et al. 2017). The legacy value of MUSE-Wide lies in providing "spectroscopy of everything" without photometric pre-selection. We describe the data reduction, post-processing and PSF characterization of the first 44 CANDELS/GOODS-S MUSE-Wide pointings released with this publication. Using a 3D matched filtering approach we detected 1,602 emission line sources, including 479 Lyman-α (Lya) emitting galaxies with redshifts 2.9≲z≲6.3. We cross-match the emission line sources to existing photometric catalogs, finding almost complete agreement in redshifts and stellar masses for our low redshift (z < 1.5) emitters. At high redshift, we only find ~55% matches to photometric catalogs. We encounter a higher outlier rate and a systematic offset of Δz≃0.2 when comparing our MUSE redshifts with photometric redshifts. Cross-matching the emission line sources with X-ray catalogs from the Chandra Deep Field South, we find 127 matches, including 10 objects with no prior spectroscopic identification. Stacking X-ray images centered on our Lya emitters yielded no signal; the Lya population is not dominated by even low luminosity AGN. A total of 9,205 photometrically selected objects from the CANDELS survey lie in the MUSE-Wide footprint, which we provide optimally extracted 1D spectra of. We are able to determine the spectroscopic redshift of 98% of 772 photometrically selected galaxies brighter than 24th F775W magnitude. All the data in the first data release - datacubes, catalogs, extracted spectra, maps - are available at the website.
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the ENVISAT satellite provided atmospheric infrared limb emission spectra. From these, profiles of temperature and atmospheric trace gases were retrieved using the research data processor developed at the Institut für Meteorologie und Klimaforschung (IMK), which is complemented by the component of non-local thermodynamic equilibrium (non-LTE) treatment from the Instituto de Astrofísica de Andalucía (IAA). The MIPAS data products on this server are commonly known as IMK/IAA MIPAS Level2 data products. The MIPAS instrument measured during two time frames: from 2002 to 2004 in full spectral resolution (high resolution = HR aka full resolution = FR), and from 2005 to 2012 in reduced spectral, but improved spatial resolution (reduced resolution = RR aka optimized resolution = OR). For this reason, there are different version numbers covering the full MIPAS mission period: xx for the HR/FR period, and 2xx for the RR/OR period (example: 61 for HR/FR, 261 for RR/OR). Beyond this, measurements were conducted in different modes covering different altitude ranges during the RR period: Nominal (6 – 70 km), MA (18 – 102 km), NLC (39 – 102 km), UA (42 – 172 km), UTLS-1 (5.5 – 19 km), UTLS-2 (12 – 42 km), AE (7 – 38 km). The non-nominal modes are identified by the following version numbers: MA = 5xx, NLC = 7xx, UA = 6xx, UTLS-1/2 = 1xx (no retrievals for AE mode).
Country
The Canadian Astronomy Data Centre (CADC) was established in 1986 by the National Research Council of Canada (NRC), through a grant provided by the Canadian Space Agency (CSA). Over the past 30 years the CADC has evolved from an archiving centre---hosting data from Hubble Space Telescope, Canada-France-Hawaii Telescope, the Gemini observatories, and the James Clerk Maxwell Telescope---into a Science Platform for data-intensive astronomy. The CADC, in partnership with Shared Services Canada, Compute Canada, CANARIE and the university community (funded through the Canadian Foundation for Innovation), offers cloud computing, user-managed storage, group management, and data publication services, in addition to its ongoing mission to provide permanent storage for major data collections. Located at NRC Herzberg Astronomy and Astrophysics Research Centre in Victoria, BC, the CADC staff consists of professional astronomers, software developers, and operations staff who work with the community to develop and deliver leading-edge services to advance Canadian research. The CADC plays a leading role in international efforts to improve the scientific/technical landscape that supports data intensive science. This includes leadership roles in the International Virtual Observatory Alliance and participation in organizations like the Research Data Alliance, CODATA, and the World Data Systems. CADC also contributes significantly to future Canadian projects like the Square Kilometre Array and TMT. In 2019, the Canadian Astronomy Data Centre (CADC) delivered over 2 Petabytes of data (over 200 million individual files) to thousands of astronomers in Canada and in over 80 other countries. The cloud processing system completed over 6 million jobs (over 1100 core years) in 2019.
Country
All observations obtained with the Parkes radio telescope are made available to the general community after an embargo period. Usually this embargo period is set to 18 months after the observation. The catalogue includes all published rotation-powered pulsars, including those detected only at high energies. It also includes Anomalous X-ray Pulsars (AXPs) and Soft Gamma-ray Repeaters (SGRs) for which coherent pulsations have been detected. However, it excludes accretion-powered pulsars such as Her X-1 and the recently discovered X-ray millisecond pulsars. ATNF Pulsar catalogue contains information on all published pulsars, with complete bibliographic information. For professional astronomers, a more detailed "Expert" web interface is available allowing access to parameters of specialist interest. The catalogue can also be accessed using a command-line interface on unix or linux systems.