Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 14 result(s)
The mission of the GO Consortium is to develop a comprehensive, computational model of biological systems, ranging from the molecular to the organism level, across the multiplicity of species in the tree of life. The Gene Ontology (GO) knowledgebase is the world’s largest source of information on the functions of genes. This knowledge is both human-readable and machine-readable, and is a foundation for computational analysis of large-scale molecular biology and genetics experiments in biomedical research.
OrthoMCL is a genome-scale algorithm for grouping orthologous protein sequences. It provides not only groups shared by two or more species/genomes, but also groups representing species-specific gene expansion families. So it serves as an important utility for automated eukaryotic genome annotation. OrthoMCL starts with reciprocal best hits within each genome as potential in-paralog/recent paralog pairs and reciprocal best hits across any two genomes as potential ortholog pairs. Related proteins are interlinked in a similarity graph. Then MCL (Markov Clustering algorithm,Van Dongen 2000; www.micans.org/mcl) is invoked to split mega-clusters. This process is analogous to the manual review in COG construction. MCL clustering is based on weights between each pair of proteins, so to correct for differences in evolutionary distance the weights are normalized before running MCL.
AmoebaDB belongs to the EuPathDB family of databases and is an integrated genomic and functional genomic database for Entamoeba and Acanthamoeba parasites. In its first iteration (released in early 2010), AmoebaDB contains the genomes of three Entamoeba species (see below). AmoebaDB integrates whole genome sequence and annotation and will rapidly expand to include experimental data and environmental isolate sequences provided by community researchers . The database includes supplemental bioinformatics analyses and a web interface for data-mining.
ToxoDB is a genome database for the genus Toxoplasma, a set of single-celled eukaryotic pathogens that cause human and animal diseases, including toxoplasmosis.
FungiDB belongs to the EuPathDB family of databases and is an integrated genomic and functional genomic database for the kingdom Fungi. FungiDB was first released in early 2011 as a collaborative project between EuPathDB and the group of Jason Stajich (University of California, Riverside). At the end of 2015, FungiDB was integrated into the EuPathDB bioinformatic resource center. FungiDB integrates whole genome sequence and annotation and also includes experimental and environmental isolate sequence data. The database includes comparative genomics, analysis of gene expression, and supplemental bioinformatics analyses and a web interface for data-mining.
The Database of Protein Disorder (DisProt) is a curated database that provides information about proteins that lack fixed 3D structure in their putatively native states, either in their entirety or in part. DisProt is a community resource annotating protein sequences for intrinsically disorder regions from the literature. It classifies intrinsic disorder based on experimental methods and three ontologies for molecular function, transition and binding partner.
Giardia lamblia is a significant, environmentally transmitted, human pathogen and an amitochondriate protist. It is a major contributor to the enormous worldwide burden of human diarrheal diseases, yet the basic biology of this parasite is not well understood. No virulence factor has been identified. The Giardia lamblia genome contains only 12 million base pairs distributed onto five chromosomes. Its analysis promises to provide insights about the origins of nuclear genome organization, the metabolic pathways used by parasitic protists, and the cellular biology of host interaction and avoidance of host immune systems. Since the divergence of Giardia lamblia lies close to the transition between eukaryotes and prokaryotes in universal ribosomal RNA phylogenies, it is a valuable, if not unique, model for gaining basic insights into genetic innovations that led to formation of eukaryotic cells. In evolutionary terms, the divergence of this organism is at least twice as ancient as the common ancestor for yeast and man. A detailed study of its genome will provide insights into an early evolutionary stage of eukaryotic chromosome organization as well as other aspects of the prokaryotic / eukaryotic divergence.
We are working on a new version of ALFRED web interface. The current web interface will not be available from December 15th, 2023. There will be a period where a public web interface is not available for viewing ALFRED data. Expected date for the deployment of the new ALFRED web interface with minimum functions is March 1st, 2024 --------------------------------------------- ALFRED is a free, web-accessible, curated compilation of allele frequency data on DNA sequence polymorphisms in anthropologically defined human populations. ALFRED is distinct from such databases as dbSNP, which catalogs sequence variation.
The Maize Genetics and Genomics Database focuses on collecting data related to the crop plant and model organism Zea mays. The project's goals are to synthesize, display, and provide access to maize genomics and genetics data, prioritizing mutant and phenotype data and tools, structural and genetic map sets, and gene models. MaizeGDB also aims to make the Maize Newsletter available, and provide support services to the community of maize researchers. MaizeGDB is working with the Schnable lab, the Panzea project, The Genome Reference Consortium, and iPlant Collaborative to create a plan for archiving, dessiminating, visualizing, and analyzing diversity data. MMaizeGDB is short for Maize Genetics/Genomics Database. It is a USDA/ARS funded project to integrate the data found in MaizeDB and ZmDB into a single schema, develop an effective interface to access this data, and develop additional tools to make data analysis easier. Our goal in the long term is a true next-generation online maize database.aize genetics and genomics database.
IEDB offers easy searching of experimental data characterizing antibody and T cell epitopes studied in humans, non-human primates, and other animal species. Epitopes involved in infectious disease, allergy, autoimmunity, and transplant are included. The IEDB also hosts tools to assist in the prediction and analysis of B cell and T cell epitopes.
EuPathDB (formerly ApiDB) is an integrated database covering the eukaryotic pathogens in the genera Acanthamoeba, Annacaliia, Babesia, Crithidia, Cryptosporidium, Edhazardia, Eimeria, Encephalitozoon, Endotrypanum, Entamoeba, Enterocytozoon, Giardia, Gregarina, Hamiltosporidium, Leishmania, Nematocida, Neospora, Nosema, Plasmodium, Theileria, Toxoplasma, Trichomonas, Trypanosoma and Vavraia, Vittaforma). While each of these groups is supported by a taxon-specific database built upon the same infrastructure, the EuPathDB portal offers an entry point to all of these resources, and the opportunity to leverage orthology for searches across genera.
The Deep Carbon Observatory (DCO) is a global community of multi-disciplinary scientists unlocking the inner secrets of Earth through investigations into life, energy, and the fundamentally unique chemistry of carbon. Deep Carbon Observatory Digital Object Registry (“DCO-VIVO”) is a centrally-managed digital object identification, object registration and metadata management service for the DCO. Digital object registration includes DCO-ID generation based on the global Handle System infrastructure and metadata collection using VIVO. Users will be able to deposit their data into the DCO Data Repository and have that data discoverable and accessible by others.
The Antimicrobial Peptide Database (APD) was originally created by a graduate student, Zhe Wang, as his master's thesis in the laboratory of Dr. Guangshun Wang. The project was initiated in 2002 and the first version of the database was open to the public in August 2003. It contained 525 peptide entries, which can be searched in multiple ways, including APD ID, peptide name, amino acid sequence, original location, PDB ID, structure, methods for structural determination, peptide length, charge, hydrophobic content, antibacterial, antifungal, antiviral, anticancer, and hemolytic activity. Some results of this bioinformatics tool were reported in the 2004 database paper. The peptide data stored in the APD were gleaned from the literature (PubMed, PDB, Google, and Swiss-Prot) manually in over a decade.