Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 16 result(s)
<<<<< ----- !!! The data is in the phase of migration to another system. Therefore the repository is no longer available. This record is out-dated.; 2020-10-06 !!! ----- >>>>> Due to the changes at the individual IGS analysis centers during these years the resulting time series of global geodetic parameters are inhomogeneous and inconsistent. A geophysical interpretation of these long series and the realization of a high-accuracy global reference frame are therefore difficult and questionable. The GPS reprocessing project GPS-PDR (Potsdam Dresden Reprocessing), initiated by TU München and TU Dresden and continued by GFZ Potsdam and TU Dresden, provides selected products of a homogeneously reprocessed global GPS network such as GPS satellite orbits and Earth rotation parameters.
The twin GRACE satellites were launched on March 17, 2002. Since that time, the GRACE Science Data System (SDS) has produced and distributed estimates of the Earth gravity field on an ongoing basis. These estimates, in conjunction with other data and models, have provided observations of terrestrial water storage changes, ice-mass variations, ocean bottom pressure changes and sea-level variations. This portal, together with PODAAC, is responsible for the distribution of the data and documentation for the GRACE project.
ISG' activities are on educational, research, and data distribution sides: principal purposes of ISG are the collection and distribution of geoid models, the collection and distribution of software for geoid computation, and the organization of technical schools on geoid determinations. ISG collects and disseminates worldwide local and regional geoid models estimated by geodetic Institutions and researchers of many countries. More than 30 countries are represented, listed in alphabetic order or localized on a map
SCISAT, also known as the Atmospheric Chemistry Experiment (ACE), is a Canadian Space Agency small satellite mission for remote sensing of the Earth's atmosphere using solar occultation. The satellite was launched on 12 August 2003 and continues to function perfectly. The primary mission goal is to improve our understanding of the chemical and dynamical processes that control the distribution of ozone in the stratosphere and upper troposphere, particularly in the Arctic. The high precision and accuracy of solar occultation makes SCISAT useful for monitoring changes in atmospheric composition and the validation of other satellite instruments. The satellite carries two instruments. A high resolution (0.02 cm-¹) infrared Fourier transform spectrometer (FTS) operating from 2 to 13 microns (750-4400 cm-¹) is measuring the vertical distribution of trace gases, particles and temperature. This provides vertical profiles of atmospheric constituents including essentially all of the major species associated with ozone chemistry. Aerosols and clouds are monitored using the extinction of solar radiation at 1.02 and 0.525 microns as measured by two filtered imagers. The vertical resolution of the FTS is about 3-4 km from the cloud tops up to about 150 km. Peter Bernath of the University of Waterloo is the principal investigator. A dual optical spectrograph called MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) covers the 400-1030 nm spectral region and measures primarily ozone, nitrogen dioxide and aerosol/cloud extinction. It has a vertical resolution of about 1-2 km. Tom McElroy of Environment and Climate Change Canada is the principal investigator. ACE data are freely available from the University of Waterloo website. SCISAT was designated an ESA Third Party Mission in 2005. ACE data are freely available through an ESA portal.
Content type(s)
Launched in November 1995, RADARSAT-1 provided Canada and the world with an operational radar satellite system capable of timely delivery of large amounts of data. Equipped with a powerful synthetic aperture radar (SAR) instrument, it acquired images of the Earth day or night, in all weather and through cloud cover, smoke and haze. RADARSAT-1 was a Canadian-led project involving the Canadian federal government, the Canadian provinces, the United States, and the private sector. It provided useful information to both commercial and scientific users in such fields as disaster management, interferometry, agriculture, cartography, hydrology, forestry, oceanography, ice studies and coastal monitoring. In 2007, RADARSAT-2 was launched, producing over 75,000 images per year since. In 2019, the RADARSAT Constellation Mission was deployed, using its three-satellite configuration for all-condition coverage. More information about RADARSAT-2 see https://mda.space/en/geo-intelligence/ RADARSAT-2 PORTAL see https://gsiportal.mda.space/gc_cp/#/map
Content type(s)
The Network for the Detection of Atmospheric Composition Change (NDACC), a major contributor to the worldwide atmospheric research effort, consists of a set of globally distributed research stations providing consistent, standardized, long-term measurements of atmospheric trace gases, particles, spectral UV radiation reaching the Earth's surface, and physical parameters, centered around the following priorities.
EartH2Observe brings together the findings from European FP projects DEWFORA, GLOWASIS, WATCH, GEOWOW and others. It will integrate available global earth observations (EO), in-situ datasets and models and will construct a global water resources re-analysis dataset of significant length (several decades). The resulting data will allow for improved insights on the full extent of available water and existing pressures on global water resources in all parts of the water cycle. The project will support efficient and globally consistent water management and decision making by providing comprehensive multi-scale (regional, continental and global) water resources observations. It will test new EO data sources, extend existing processing algorithms and combine data from multiple satellite missions in order to improve the overall resolution and reliability of EO data included in the re-analysis dataset. The resulting datasets will be made available through an open Water Cycle Integrator data portal https://wci.earth2observe.eu/ : the European contribution to the GEOSS/WCI approach. The datasets will be downscaled for application in case-studies at regional and local levels, and optimized based on identified European and local needs supporting water management and decision making . Actual data access: https://wci.earth2observe.eu/data/group/earth2observe
This data repository provides access to the climatology of polar stratospheric clouds (PSC) observations of Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the Envisat satellite of the European Space Agency (ESA). The MIPAS instrument operated from July 2002 until April 2012. The infrared limb emission measurements provide a unique dataset of day and night observations of polar stratospheric clouds (PSCs) up to both poles.
The International Laser Ranging Service (ILRS) provides global satellite and lunar laser ranging data and their related products to support geodetic and geophysical research activities as well as IERS products important to the maintenance of an accurate International Terrestrial Reference Frame (ITRF). The service develops the necessary global standards/specifications and encourages international adherence to its conventions. The ILRS is one of the space geodetic services of the International Association of Geodesy (IAG). The ILRS collects, merges, archives and distributes Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) observation data sets of sufficient accuracy to satisfy the objectives of a wide range of scientific, engineering, and operational applications and experimentation.
The objective of this database is to stimulate the exchange of information and the collaboration between researchers within the ChArMEx community. However, this community is not exclusive and researchers not directly involved in ChArMEx, but who wish to contribute to the achievements of ChArMEx scientific and/or educational goals are welcome to join-in. The database is a depository for all the data collected during the various projects that contribute to ChArMEx coordinated program. It aims at documenting, storing and distributing the data produced or used by the project community. However, it is also intended to host datasets that were produced outside the ChArMEx program but which are meaningful to ChArMEx scientific and/or educational goals. Any data owner who wishes to add or link his dataset to ChArMEx database is welcome to contact the database manager in order to get help and support. The ChArMEx database includes past and recent geophysical in situ observations, satellite products and model outputs. The database organizes the data management and provides data services to end-users of ChArMEx data. The database system provides a detailed description of the products and uses standardized formats whenever it is possible. It defines the access rules to the data and details the mutual rights and obligations of data providers and users (see ChArMEx data and publication policy). The database is being developed jointly by : SEDOO, OMP Toulouse , ICARE, Lille and ESPRI, IPSL Paris
!!! >>> Duplicate to https://www.re3data.org/repository/r3d100011116 , this entry is no longer maintained <<< !!!! GGOS is the Global Geodetic Observing System of the International Association of Geodesy (IAG). It provides observations of the three fundamental geodetic observables and their variations, that is, the Earth's shape, the Earth's gravity field and the Earth's rotational motion. GGOS integrates different geodetic techniques, different models, different approaches in order to ensure a long-term, precise monitoring of the geodetic observables in agreement with the Integrated Global Observing Strategy (IGOS). GGOS provides the observational basis to maintain a stable, accurate and global reference frame and in this function is crucial for all Earth observation and many practical applications.
The NASA/GEWEX SRB project is a major component of the GEWEX radiation research. The objective of the NASA/GEWEX SRB project is to determine surface, top-of-atmosphere (TOA), and atmospheric shortwave (SW) and longwave (LW) radiative fluxes with the precision needed to predict transient climate variations and decadal-to-centennial climate trends.
The IGS global system of satellite tracking stations, Data Centers, and Analysis Centers puts high-quality GPS data and data products on line in near real time to meet the objectives of a wide range of scientific and engineering applications and studies. The IGS collects, archives, and distributes GPS observation data sets of sufficient accuracy to satisfy the objectives of a wide range of applications and experimentation. These data sets are used by the IGS to generate the data products mentioned above which are made available to interested users through the Internet. In particular, the accuracies of IGS products are sufficient for the improvement and extension of the International Terrestrial Reference Frame (ITRF), the monitoring of solid Earth deformations, the monitoring of Earth rotation and variations in the liquid Earth (sea level, ice-sheets, etc.), for scientific satellite orbit determinations, ionosphere monitoring, and recovery of precipitable water vapor measurements.
The International Center for Global Earth Models collects and distributes historical and actual global gravity field models of the Earth and offers calculation service for derived quantities. In particular the tasks include: collecting and archiving of all existing global gravity field models, web interface for getting access to global gravity field models, web based visualization of the gravity field models their differences and their time variation, web based service for calculating different functionals of the gravity field models, web site for tutorials on spherical harmonics and the theory of the calculation service. As new service since 2016, ICGEM is providing a Digital Object Identifier (DOI) for the data set of the model (the coefficients).