Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 9 result(s)
We present the MUSE-Wide survey, a blind, 3D spectroscopic survey in the CANDELS/GOODS-S and CANDELS/COSMOS regions. Each MUSE-Wide pointing has a depth of 1 hour and hence targets more extreme and more luminous objects over 10 times the area of the MUSE-Deep fields (Bacon et al. 2017). The legacy value of MUSE-Wide lies in providing "spectroscopy of everything" without photometric pre-selection. We describe the data reduction, post-processing and PSF characterization of the first 44 CANDELS/GOODS-S MUSE-Wide pointings released with this publication. Using a 3D matched filtering approach we detected 1,602 emission line sources, including 479 Lyman-α (Lya) emitting galaxies with redshifts 2.9≲z≲6.3. We cross-match the emission line sources to existing photometric catalogs, finding almost complete agreement in redshifts and stellar masses for our low redshift (z < 1.5) emitters. At high redshift, we only find ~55% matches to photometric catalogs. We encounter a higher outlier rate and a systematic offset of Δz≃0.2 when comparing our MUSE redshifts with photometric redshifts. Cross-matching the emission line sources with X-ray catalogs from the Chandra Deep Field South, we find 127 matches, including 10 objects with no prior spectroscopic identification. Stacking X-ray images centered on our Lya emitters yielded no signal; the Lya population is not dominated by even low luminosity AGN. A total of 9,205 photometrically selected objects from the CANDELS survey lie in the MUSE-Wide footprint, which we provide optimally extracted 1D spectra of. We are able to determine the spectroscopic redshift of 98% of 772 photometrically selected galaxies brighter than 24th F775W magnitude. All the data in the first data release - datacubes, catalogs, extracted spectra, maps - are available at the website.
RAVE (RAdial Velocity Experiment) is a multi-fiber spectroscopic astronomical survey of stars in the Milky Way using the 1.2-m UK Schmidt Telescope of the Anglo-Australian Observatory (AAO). The RAVE collaboration consists of researchers from over 20 institutions around the world and is coordinated by the Leibniz-Institut für Astrophysik Potsdam. As a southern hemisphere survey covering 20,000 square degrees of the sky, RAVE's primary aim is to derive the radial velocity of stars from the observed spectra. Additional information is also derived such as effective temperature, surface gravity, metallicity, photometric parallax and elemental abundance data for the stars. The survey represents a giant leap forward in our understanding of our own Milky Way galaxy; with RAVE's vast stellar kinematic database the structure, formation and evolution of our Galaxy can be studied.
The ESCAPE Open-source Scientific Software and Service Repository (OSSR) is a sustainable open-access repository to share scientific software, services and datasets to the astro-particle-physics-related communities and enable open science. It is built as a curated Zenodo community (https://zenodo.org/communities/escape2020) integrated with several tools to enable a complete software life-cycle. The ESCAPE Zenodo community welcomes entries that support the software and service projects in the OSSR such as user-support documentation, tutorials, presentations and training activities. It also encourages the archival of documents and material that disseminate and support the goals of ESCAPE.
Subject(s)
Country
Edmond is the institutional repository of the Max Planck Society for public research data. It enables Max Planck scientists to create citable scientific assets by describing, enriching, sharing, exposing, linking, publishing and archiving research data of all kinds. Further on, all objects within Edmond have a unique identifier and therefore can be clearly referenced in publications or reused in other contexts.
Country
The GAVO data centre at Zentrum für Astronomie Heidelberg publishes astronomical data of all kinds – e.g., catalogues, images, spectra, time series, simulation results – in accordance with Virtual Observatory standards, making them findable and immediately usable through popular clients like TOPCAT, Aladin, or programatically through the astropy-affiliated package pyVO or the Java library STIL. We pay particular attention to providing thorough metadata to the VO Registry in order to facilitate discovery and reuse. While we have a clear focus on data produced with German contributions, we will usually publish data of other provenance, too. See https://docs.g-vo.org/DaCHS/data_checklist.html for an overview of what resource-level metadata we ask for; contact us for further information on how to publish through the German Astronomical Virtual Observatory.
Country
The TRR170-DB was set up to manage data products of the collaborative research center TRR 170 'Late Accretion onto Terrestrial Planets' (https://www.trr170-lateaccretion.de/). However, meanwhile the repository also stores data by other institutions and researchers. Data include laboratory and other instrumental data on planetary samples, remote sensing data, geological maps and model simulations.
Content type(s)
Country
German astronomical observatories own considerable collection of photographic plates. While these observations lead to significant discoveries in the past, they are also of interest for scientists today and in the future. In particular, for the study of long-term variability of many types of stars, these measurements are of immense scientific value. There are about 85000 plates in the archives of Hamburger Sternwarte, Dr. Karl Remeis-Sternwarte Bamberg, and Leibniz-Institut für Astrophysik Potsdam (AIP). The plates are digitized with high-resolution flatbed scanners. In addition, the corresponding plate envelopes and observation logbooks are digitized, and further metadata are entered into the database. The work is carried out within the project “Digitalisierung astronomischer Fotoplatten und ihre Integration in das internationale Virtual Observatory”, which is funded by the DFG.
The Astrophysics Source Code Library (ASCL) is a free online registry for source codes of interest to astronomers and astrophysicists and lists codes that have been used in research that has appeared in, or been submitted to, peer-reviewed publications. The ASCL is citable by using the unique ascl ID assigned to each code. The ascl ID can be used to link to the code entry by prefacing the number with ascl.net (i.e., ascl.net/1201.001).
Launched in December 2013, Gaia is destined to create the most accurate map yet of the Milky Way. By making accurate measurements of the positions and motions of stars in the Milky Way, it will answer questions about the origin and evolution of our home galaxy. The first data release (2016) contains three-dimensional positions and two-dimensional motions of a subset of two million stars. The second data release (2018) increases that number to over 1.6 Billion. Gaia’s measurements are as precise as planned, paving the way to a better understanding of our galaxy and its neighborhood. The AIP hosts the Gaia data as one of the external data centers along with the main Gaia archive maintained by ESAC and provides access to the Gaia data releases as part of Gaia Data Processing and Analysis Consortium (DPAC).