Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 32 result(s)
The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. Building upon the success of the Tropical Rainfall Measuring Mission (TRMM), the GPM concept centers on the deployment of a “Core” satellite carrying an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites.
SCEC's mission includes gathering data on earthquakes, both in Southern California and other locales; integrate the information into a comprehensive understanding of earthquake phenomena; and communicate useful knowledge for reducing earthquake risk to society at large. The SCEC community consists of more than 600 scientists from 16 core institutions and 47 additional participating institutions. SCEC is funded by the National Science Foundation and the U.S. Geological Survey.
NASA’s Precipitation Measurement Missions – TRMM and GPM – provide advanced information on rain and snow characteristics and detailed three-dimensional knowledge of precipitation structure within the atmosphere, which help scientists study and understand Earth's water cycle, weather and climate.
Country
<<<!!!<<< The website www.geobase.ca/ closed in January 2015. >>>!!!>>> All GeoBase products are available on the Open Government of Canada portal: https://open.canada.ca/data/en/dataset?q=geobase&organization=nrcan-rncan GeoBase initiative provides geospatial data of the entire Canadian landmass for government, business, and/or personal assessments of sustainable resource development, public safety, sanitation, and environmental protection. Data is available for download as ESRI Shapefile, FGDB, KML, and GML.
Country
Indian Space Science Programme has the primary goal of promoting and establishing space science and technology programme. The ISSDC is the primary data center to be retrieved from Indian space science missions. This center is responsible for the collections of payload data and related ancillary data for space science missions such as Chandrayaan, Astrosat, Youthsat, etc. The payload data sets can include a range of information including satellite images, X-ray spectrometer readings, and other space observations.
Country
ISDC's online service portal is an access point for all manner of geoscientific geodata, its corresponding metadata, scientific documentation and software tools. The majority of the data and information, the portal currently offers to the public, are global geomonitoring products such as satellite orbit and Earth gravity field data as well as geomagnetic and atmospheric data for the exploration. These products for Earths changing system are provided via state-of-the art retrieval techniques. The projects hosted are: CHAMP, GGP, GRACE, GNSS, GGSP, GGOS, GPS-PDR, ICGEM, TerraSAR-x (TSX-TOR) and TanDEM-X.
<<<!!!<<< Duplicate to https://www.re3data.org/repository/r3d100011116 , this entry is no longer maintained >>>!!!>>> GGOS is the Global Geodetic Observing System of the International Association of Geodesy (IAG). It provides observations of the three fundamental geodetic observables and their variations, that is, the Earth's shape, the Earth's gravity field and the Earth's rotational motion. GGOS integrates different geodetic techniques, different models, different approaches in order to ensure a long-term, precise monitoring of the geodetic observables in agreement with the Integrated Global Observing Strategy (IGOS). GGOS provides the observational basis to maintain a stable, accurate and global reference frame and in this function is crucial for all Earth observation and many practical applications.
The Geo Big Data Open Platform of the Korea Institute of Geological Resources is a data-based repository that allows anyone to easily access the latest geological resource information scattered in Korea. It was established for the purpose of quickly organizing and providing domestic and foreign geological resource research information pouring out of a super-gap society to utilize the solution of national social problems and create an open science research ecosystem in the geological resource field.
Country
The term GNSS (Global Navigation Satellite Systems) comprises the different navigation satellite systems like GPS, GLONAS and the future Galileo as well as rawdata from GNSS microwave receivers and processed or derived higher level products and required auxiliary data. The results of the GZF GNSS technology based projects are used as contribution for maintaining and studying the Earth rotational behavior and the global terrestial reference frame, for studying neotectonic processes along plate boundaries and the interior of plates and as input to short term weather forecasting and atmosphere/climate research. Currently only selected products like observation data, navigation data (ephemeriden), meteorological data as well as quality data with a limited spatial coverage are provided by the GNSS ISDC.
The twin GRACE satellites were launched on March 17, 2002. Since that time, the GRACE Science Data System (SDS) has produced and distributed estimates of the Earth gravity field on an ongoing basis. These estimates, in conjunction with other data and models, have provided observations of terrestrial water storage changes, ice-mass variations, ocean bottom pressure changes and sea-level variations. This portal, together with PODAAC, is responsible for the distribution of the data and documentation for the GRACE project.
The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols play in regulating Earth's weather, climate, and air quality. CALIPSO combines an active lidar instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. CALIPSO was launched on April 28, 2006, with the CloudSat satellite. CALIPSO and CloudSat are highly complementary and together provide new, never-before-seen 3D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO and CloudSat fly in formation with three other satellites in the A-train constellation to enable an even greater understanding of our climate system.
Country
HYdrological cycle in the Mediterranean EXperiemnt. Considering the science and societal issues motivating HyMeX, the programme aims to : improve our understanding of the water cycle, with emphasis on extreme events, by monitoring and modelling the Mediterranean atmosphere-land-ocean coupled system, its variability from the event to the seasonal and interannual scales, and its characteristics over one decade (2010-2020) in the context of global change, assess the social and economic vulnerability to extreme events and adaptation capacity.The multidisciplinary research and the database developed within HyMeX should contribute to: improve observational and modelling systems, especially for coupled systems, better predict extreme events, simulate the long-term water-cycle more accurately, provide guidelines for adaptation measures, especially in the context of global change.
The main function of the GGSP (Galileo Geodetic Service Provider) is to provide a terrestrial reference frame, in the broadest sense of the word, to both the Galileo Core System (GCS) as well as to the Galileo User Segment (all Galileo users). This implies that the GGSP should enable all users of the Galileo System, including the most demanding ones, to access and realise the GTRF with the precision required for their specific application. Furthermore, the GGSP must ensure the proper interfaces to all users of the GTRF, especially the geodetic and scientific user groups. In addition the GGSP must ensure the adherence to the defined standards of all its products. Last but not least the GGSP will play a key role to create awareness of the GTRF and educate users in the usage and realisation of the GTRF.
Country
The GeoPortal.rlp allows the central search and visualization of geo data. Inside the geo data infrastructure of Rhineland-Palatinate the GeoPortal.rlp inherit the central duty a service orientated branch exchange between user and offerer of geo data. The GeoPortal.rlp establishes the access to geo data over the electronic network. The GeoPortal.rlp was brought on line on January, 8th 2007 for the first time, on February, 2nd 2011 it occured a site-relaunch.
Country
HALO-DB is the web platform of a data retrieval and long-term archive system. The system was established to hold and to manage a wide range of data based on observations of the HALO research aircraft and data which are related to HALO observations. HALO (High-Altitude and LOng-range aircraft) is the new German research aircraft (German Science Community (DFG)). The aircraft, a Gulfstream GV-550 Business-Jet, is strongly modified for the application as a research platform. HALO offers several advantages for scientific campaigns, such as its high range of more than 10000 km, a high maximum altitude of more than 15 km, as well as a relatively high payload.
<<<!!!<<< The data is in the phase of migration to another system. Therefore the repository is no longer available. This record is out-dated.; 2020-10-06 >>>!!!>>> Due to the changes at the individual IGS analysis centers during these years the resulting time series of global geodetic parameters are inhomogeneous and inconsistent. A geophysical interpretation of these long series and the realization of a high-accuracy global reference frame are therefore difficult and questionable. The GPS reprocessing project GPS-PDR (Potsdam Dresden Reprocessing), initiated by TU München and TU Dresden and continued by GFZ Potsdam and TU Dresden, provides selected products of a homogeneously reprocessed global GPS network such as GPS satellite orbits and Earth rotation parameters.
Measurements Of Pollution In The Troposphere (MOPITT) was launched into sun-synchronous polar orbit on December 18, 1999, aboard TERRA, a NASA satellite orbiting 705 km above the Earth. MOPITT monitors changes in pollution patterns and the effects on Earth’s troposphere. MOPITT uses near-infrared radiation at 2.3 µm and thermal-infrared radiation at 4.7 µm to calculate atmospheric profiles of CO.
EartH2Observe brings together the findings from European FP projects DEWFORA, GLOWASIS, WATCH, GEOWOW and others. It will integrate available global earth observations (EO), in-situ datasets and models and will construct a global water resources re-analysis dataset of significant length (several decades). The resulting data will allow for improved insights on the full extent of available water and existing pressures on global water resources in all parts of the water cycle. The project will support efficient and globally consistent water management and decision making by providing comprehensive multi-scale (regional, continental and global) water resources observations. It will test new EO data sources, extend existing processing algorithms and combine data from multiple satellite missions in order to improve the overall resolution and reliability of EO data included in the re-analysis dataset. The resulting datasets will be made available through an open Water Cycle Integrator data portal https://wci.earth2observe.eu/ : the European contribution to the GEOSS/WCI approach. The datasets will be downscaled for application in case-studies at regional and local levels, and optimized based on identified European and local needs supporting water management and decision making . Actual data access: https://wci.earth2observe.eu/data/group/earth2observe
The Joint Information Systems Committee (JISC) funded Landmap service which ran from 2001 to July 2014 collected, modified and hosted a large amount of earth observation data for the majority of the UK, including imagery from ERS satellites, ENVISAT and ALOS, high-resolution Digital Elevation Models (DEMs) and Digital Terrain Models (DTMs) and aerial photography dating back to 1930. After removal of JISC funding in 2013, the Landmap service is no longer operational, with the data now held at the NEODC. Aside from the thermal imagery data which stands alone, the data reside in four collections: optical, elevation, radar and feature.
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.
Copernicus is a European system for monitoring the Earth. Copernicus consists of a complex set of systems which collect data from multiple sources: earth observation satellites and in situ sensors such as ground stations, airborne and sea-borne sensors. It processes these data and provides users with reliable and up-to-date information through a set of services related to environmental and security issues. The services address six thematic areas: land monitoring, marine monitoring, atmosphere monitoring, climate change, emergency management and security. The main users of Copernicus services are policymakers and public authorities who need the information to develop environmental legislation and policies or to take critical decisions in the event of an emergency, such as a natural disaster or a humanitarian crisis. Based on the Copernicus services and on the data collected through the Sentinels and the contributing missions , many value-added services can be tailored to specific public or commercial needs, resulting in new business opportunities. In fact, several economic studies have already demonstrated a huge potential for job creation, innovation and growth.
The National Science Foundation (NSF) Ultraviolet (UV) Monitoring Network provides data on ozone depletion and the associated effects on terrestrial and marine systems. Data are collected from 7 sites in Antarctica, Argentina, United States, and Greenland. The network is providing data to researchers studying the effects of ozone depletion on terrestrial and marine biological systems. Network data is also used for the validation of satellite observations and for the verification of models describing the transfer of radiation through the atmosphere.