Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 8 result(s)
RAVE (RAdial Velocity Experiment) is a multi-fiber spectroscopic astronomical survey of stars in the Milky Way using the 1.2-m UK Schmidt Telescope of the Anglo-Australian Observatory (AAO). The RAVE collaboration consists of researchers from over 20 institutions around the world and is coordinated by the Leibniz-Institut für Astrophysik Potsdam. As a southern hemisphere survey covering 20,000 square degrees of the sky, RAVE's primary aim is to derive the radial velocity of stars from the observed spectra. Additional information is also derived such as effective temperature, surface gravity, metallicity, photometric parallax and elemental abundance data for the stars. The survey represents a giant leap forward in our understanding of our own Milky Way galaxy; with RAVE's vast stellar kinematic database the structure, formation and evolution of our Galaxy can be studied.
ICOS Carbon Portal is the data portal of the Integrated Carbon Observation System. It provides observational data from the state of the carbon cycle in Europe and the world. The Carbon Portal is the data center of the ICOS infrastructure. ICOS will collect greenhouse gas concentration and fluxes observations from three separate networks, all these observations are carried out to support research to help us understand how the Earth’s greenhouse gas balance works, because there are still many and large uncertainties!
CERN, DESY, Fermilab and SLAC have built the next-generation High Energy Physics (HEP) information system, INSPIRE. It combines the successful SPIRES database content, curated at DESY, Fermilab and SLAC, with the Invenio digital library technology developed at CERN. INSPIRE is run by a collaboration of CERN, DESY, Fermilab, IHEP, IN2P3 and SLAC, and interacts closely with HEP publishers, arXiv.org, NASA-ADS, PDG, HEPDATA and other information resources. INSPIRE represents a natural evolution of scholarly communication, built on successful community-based information systems, and provides a vision for information management in other fields of science.
The CERN Open Data portal is the access point to a growing range of data produced through the research performed at CERN. It disseminates the preserved output from various research activities, including accompanying software and documentation which is needed to understand and analyze the data being shared.
Content type(s)
Scicat allows users to access the metadata of raw and derived data which is taken at experiment facilities. Scientific datasets are linked to proposals and samples. Scientific datasets are can be linked to publications (DOI, PID). SciCat helps keeping track of data provenance (i.e. the steps leading to the final results). Scicat allows users to find data based on the metadata (both your own data and other peoples’ public data). In the long term, SciCat will help to automate scientific analysis workflows.
The aim of the Freshwater Biodiversity Data Portal is to integrate and provide open and free access to freshwater biodiversity data from all possible sources. To this end, we offer tools and support for scientists interested in documenting/advertising their dataset in the metadatabase, in submitting or publishing their primary biodiversity data (i.e. species occurrence records) or having their dataset linked to the Freshwater Biodiversity Data Portal. This information portal serves as a data discovery tool, and allows scientists and managers to complement, integrate, and analyse distribution data to elucidate patterns in freshwater biodiversity. The Freshwater Biodiversity Data Portal was initiated under the EU FP7 BioFresh project and continued through the Freshwater Information Platform (http://www.freshwaterplatform.eu). To ensure the broad availability of biodiversity data and integration in the global GBIF index, we strongly encourages scientists to submit any primary biodiversity data published in a scientific paper to national nodes of GBIF or to thematic initiatives such as the Freshwater Biodiversity Data Portal.
ZENODO builds and operates a simple and innovative service that enables researchers, scientists, EU projects and institutions to share and showcase multidisciplinary research results (data and publications) that are not part of the existing institutional or subject-based repositories of the research communities. ZENODO enables researchers, scientists, EU projects and institutions to: easily share the long tail of small research results in a wide variety of formats including text, spreadsheets, audio, video, and images across all fields of science. display their research results and get credited by making the research results citable and integrate them into existing reporting lines to funding agencies like the European Commission. easily access and reuse shared research results.
Launched in December 2013, Gaia is destined to create the most accurate map yet of the Milky Way. By making accurate measurements of the positions and motions of stars in the Milky Way, it will answer questions about the origin and evolution of our home galaxy. The first data release (2016) contains three-dimensional positions and two-dimensional motions of a subset of two million stars. The second data release (2018) increases that number to over 1.6 Billion. Gaia’s measurements are as precise as planned, paving the way to a better understanding of our galaxy and its neighborhood. The AIP hosts the Gaia data as one of the external data centers along with the main Gaia archive maintained by ESAC and provides access to the Gaia data releases as part of Gaia Data Processing and Analysis Consortium (DPAC).