Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 17 result(s)
Historic Environment Scotland was formed in October 2015 following the merger between Historic Scotland and The Royal Commission on the Ancient and Historical Monuments of Scotland. Historic Environment Scotland is the lead public body established to investigate, care for and promote Scotland’s historic environment. We lead and enable Scotland’s first historic environment strategy Our Place in Time, which sets out how our historic environment will be managed. It ensures our historic environment is cared for, valued and enhanced, both now and for future generations.
Country
The National Air Pollution Surveillance (NAPS) Program provides accurate and long-term air quality data of a uniform standard across Canada. The NAPS Network has a Canada-Wide database of criteria air contaminants from the early 1970s to the present for designated NAPS sites, as well as provincial, territorial and other sites. Trace contaminants are also monitored at several stations in the network and analyzed by the laboratory at River Road.
The DCS allows you to search a catalogue of metadata (information describing data) to discover and gain access to NERC's data holdings and information products. The metadata are prepared to a common NERC Metadata Standard and are provided to the catalogue by the NERC Data Centres.
Country
CEEHRC represents a multi-stage funding commitment by the Canadian Institutes of Health Research (CIHR) and multiple Canadian and international partners. The overall aim is to position Canada at the forefront of international efforts to translate new discoveries in the field of epigenetics into improved human health. The two sites will focus on sequencing human reference epigenomes and developing new technologies and protocols; they will also serve as platforms for other CEEHRC funding initiatives, such as catalyst and team grants. The complementary reference epigenome mapping efforts of the two sites will focus on a range of common human diseases. The Vancouver group will focus on the role of epigenetics in the development of cancer, including lymphoma and cancers of the ovary, colon, breast, and thyroid. The Montreal team will focus on autoimmune / inflammatory, cardio-metabolic, and neuropsychiatric diseases, using studies of identical twins as well as animal models of human disease.
Copernicus is a European system for monitoring the Earth. Copernicus consists of a complex set of systems which collect data from multiple sources: earth observation satellites and in situ sensors such as ground stations, airborne and sea-borne sensors. It processes these data and provides users with reliable and up-to-date information through a set of services related to environmental and security issues. The services address six thematic areas: land monitoring, marine monitoring, atmosphere monitoring, climate change, emergency management and security. The main users of Copernicus services are policymakers and public authorities who need the information to develop environmental legislation and policies or to take critical decisions in the event of an emergency, such as a natural disaster or a humanitarian crisis. Based on the Copernicus services and on the data collected through the Sentinels and the contributing missions , many value-added services can be tailored to specific public or commercial needs, resulting in new business opportunities. In fact, several economic studies have already demonstrated a huge potential for job creation, innovation and growth.
>>>!!!<<<The repository is offline >>>!!!<<< The Space Physics Interactive Data Resource from NOAA's National Geophysical Data Center allows solar terrestrial physics customers to intelligently access and manage historical space physics data for integration with environment models and space weather forecasts.
This website provides access to an extensive database of environmental data and an integrated suite of online tools and resources to help Federal Land Managers assess and analyze the air quality and visibility in Federally-protected lands such as National Parks, National Forests, and Wilderness Areas
Country
Projects in the International Scientific Continental Drilling Program (ICDP) produce large amounts of data. Since the start of ICDP, data sharing has played an important part in ICDP projects, and the ICDP Operational Support Group, which provides the infrastructure for data capturing for many ICDP projects, has facilitated dissemination of data within project groups. With the online Scientific Drilling Database (SDDB; http://www.scientificdrilling.org), ICDP and GeoForschungsZentrum Potsdam (GFZ), Germany created a platform for the public dissemination of drilling data
<<<!!!<<<The repository is no longer available <<<!!!<<< TOXNET has moved. Most content will continue to be collected and reviewed; selected information is accessible through PubChem, PubMed, and Bookshelf. If you have questions, please contact NLM Customer Support at https://support.nlm.nih.gov/ >>>!!!>>>
WorldClim is a set of global climate layers (climate grids) with a spatial resolution of about 1 square kilometer. The data can be used for mapping and spatial modeling in a GIS or with other computer programs.
Country
GovData the data portal for Germany offers consistent and central access to administrative data at the federal, state, and local level. Objective is to make data more available and easier to use at a single location. As set out in the concept of "open data", we attempt to facilitate the use of open licenses and to increase the supply of machine-readable raw data.
<<<!!!<<< stated 26-02-2020: Amsterdam Cohort Studies on HIV infection and AIDS is no longer available online >>>!!!>>> The Amsterdam cohort study (ACS) on human immunodeficiency virus (HIV) infection and AIDS among homosexual men started in 1984 and was expanded to include drug users in 1985. Thus far, about 2100 homosexual men and 1630 (injecting) drug users have been included of whom approximately 700 homosexual men and 550 drug users are still in active follow-up. Every 3-6 months participants complete a standardized questionnaire to obtain medical, epidemiological and social scientific information and undergo a medical examination. In addition, they have blood drawn for virological and immunological tests and storage.
MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (originally known as EOS AM-1) and Aqua (originally known as EOS PM-1) satellites. Terra's orbit around the Earth is timed so that it passes from north to south across the equator in the morning, while Aqua passes south to north over the equator in the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see MODIS Technical Specifications). These data will improve our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. MODIS is playing a vital role in the development of validated, global, interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment.
SCISAT, also known as the Atmospheric Chemistry Experiment (ACE), is a Canadian Space Agency small satellite mission for remote sensing of the Earth's atmosphere using solar occultation. The satellite was launched on 12 August 2003 and continues to function perfectly. The primary mission goal is to improve our understanding of the chemical and dynamical processes that control the distribution of ozone in the stratosphere and upper troposphere, particularly in the Arctic. The high precision and accuracy of solar occultation makes SCISAT useful for monitoring changes in atmospheric composition and the validation of other satellite instruments. The satellite carries two instruments. A high resolution (0.02 cm-¹) infrared Fourier transform spectrometer (FTS) operating from 2 to 13 microns (750-4400 cm-¹) is measuring the vertical distribution of trace gases, particles and temperature. This provides vertical profiles of atmospheric constituents including essentially all of the major species associated with ozone chemistry. Aerosols and clouds are monitored using the extinction of solar radiation at 1.02 and 0.525 microns as measured by two filtered imagers. The vertical resolution of the FTS is about 3-4 km from the cloud tops up to about 150 km. Peter Bernath of the University of Waterloo is the principal investigator. A dual optical spectrograph called MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) covers the 400-1030 nm spectral region and measures primarily ozone, nitrogen dioxide and aerosol/cloud extinction. It has a vertical resolution of about 1-2 km. Tom McElroy of Environment and Climate Change Canada is the principal investigator. ACE data are freely available from the University of Waterloo website. SCISAT was designated an ESA Third Party Mission in 2005. ACE data are freely available through an ESA portal.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.