Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 66 result(s)
Content type(s)
Launched in November 1995, RADARSAT-1 provided Canada and the world with an operational radar satellite system capable of timely delivery of large amounts of data. Equipped with a powerful synthetic aperture radar (SAR) instrument, it acquired images of the Earth day or night, in all weather and through cloud cover, smoke and haze. RADARSAT-1 was a Canadian-led project involving the Canadian federal government, the Canadian provinces, the United States, and the private sector. It provided useful information to both commercial and scientific users in such fields as disaster management, interferometry, agriculture, cartography, hydrology, forestry, oceanography, ice studies and coastal monitoring. In 2007, RADARSAT-2 was launched, producing over 75,000 images per year since. In 2019, the RADARSAT Constellation Mission was deployed, using its three-satellite configuration for all-condition coverage. More information about RADARSAT-2 see https://mda.space/en/geo-intelligence/ RADARSAT-2 PORTAL see https://gsiportal.mda.space/gc_cp/#/map
Remote Sensing Systems is a world leader in processing and analyzing microwave data from satellite microwave sensors. We specialize in algorithm development, instrument calibration, ocean product development, and product validation. We have worked with more than 30 satellite microwave radiometer, sounder, and scatterometer instruments over the past 40 years. Currently, we operationally produce satellite retrievals for SSMIS, AMSR2, WindSat, and ASCAT. The geophysical retrievals obtained from these sensors are made available in near-real-time (NRT) to the global scientific community and general public via FTP and this web site.
Earth Resources Observation and Science (EROS) Center is a remotely sensed data management, systems development, and research field center for the U.S. Geological Survey's (USGS) Climate and Land Use Change Mission Area. The USGS is a bureau of the U.S. Department of the Interior. It currently houses one of the largest computer complexes in the Department of the Interior. EROS has approximately 600 government and contractor employees.
Country
Various information, such as xylarium data with wood specimens collected since 1944, atmospheric observation data using the MU radar and other instruments, space-plasma data observed with GEOTAIL satellite, are now combined as Database of Humanosphere and served for public use. Proposals for scientific and technological use are always welcome.
LAMBDA is a part of NASA's High Energy Astrophysics Science Archive Research Center (HEASARC). LAMBDA is a multi-mission NASA center of expertise for cosmic microwave background radiation research. LAMBDA exists to serve the CMB research community, and the greater cosmological research community.
Country
ISDC's online service portal is an access point for all manner of geoscientific geodata, its corresponding metadata, scientific documentation and software tools. The majority of the data and information, the portal currently offers to the public, are global geomonitoring products such as satellite orbit and Earth gravity field data as well as geomagnetic and atmospheric data for the exploration. These products for Earths changing system are provided via state-of-the art retrieval techniques. The projects hosted are: CHAMP, GGP, GRACE, GNSS, GGSP, GGOS, GPS-PDR, ICGEM, TerraSAR-x (TSX-TOR) and TanDEM-X.
The Satellite Application Facility on Climate Monitoring (CM SAF) develops, produces, archives and disseminates satellite-data-based products in support to climate monitoring. The product suite mainly covers parameters related to the energy & water cycle and addresses many of the Essential Climate Variables as defined by GCOS (GCOS 138). The CM SAF produces both Enviromental Data Records and Climate Data Records.
The SAR Data Center has a large data archive of Synthetic Aperture Radar (SAR) from a variety of sensors available at no cost. Much of the SAR data in the ASF SDC archive is limited in distribution to the scientific research community and U.S. Government Agencies. In accordance with the Memoranda of Understanding (MOU) between the relevant flight agencies (CSA, ESA, JAXA) and the U.S. State Department, the ASF SDC does not distribute SAR data for commercial use. The research community can access the data (ERS-1, ERS-2, JERS-1, RADARSAT-1, and ALOS PALSAR) via a brief proposal process.
EUMETSAT's primary objective is to establish, maintain and exploit European systems of operational meteorological satellites. EUMETSAT is responsible for the launch and operation of the satellites and for delivering satellite data to end-users as well as contributing to the operational monitoring of climate and the detection of global climate changes. The EUMETSAT Product Navigator is the catalogue for all EUMETSAT data and products.
Country
Indian Space Science Programme has the primary goal of promoting and establishing space science and technology programme. The ISSDC is the primary data center to be retrieved from Indian space science missions. This center is responsible for the collections of payload data and related ancillary data for space science missions such as Chandrayaan, Astrosat, Youthsat, etc. The payload data sets can include a range of information including satellite images, X-ray spectrometer readings, and other space observations.
Country
AVISO stands for "Archiving, Validation and Interpretation of Satellite Oceanographic data". Here, you will find data, articles, news and tools to help you discover or improve your skills in the altimetry domain through four key themes: ocean, coast, hydrology and ice. Altimetry is a technique for measuring height. Satellite altimetry measures the time taken by a radar pulse to travel from the satellite antenna to the surface and back to the satellite receiver. Combined with precise satellite location data, altimetry measurements yield sea-surface heights.
The Multi-angle Imaging SpectroRadiometer (MISR) measurements are designed to improve understanding of the Earth’s environment and climate. MISR provides radiometrically and geometrically calibrated images in four spectral bands at each of nine widely-spaced angles. Spatial sampling of 275 and 1100 meters is provided on a global basis. All MISR data products are available in HDF-EOS format, and select products are available in netCDF format.
The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols play in regulating Earth's weather, climate, and air quality. CALIPSO combines an active lidar instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. CALIPSO was launched on April 28, 2006, with the CloudSat satellite. CALIPSO and CloudSat are highly complementary and together provide new, never-before-seen 3D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO and CloudSat fly in formation with three other satellites in the A-train constellation to enable an even greater understanding of our climate system.
Satellite-tracked drifting buoys ("drifters") collect measurements of upper ocean currents and sea surface temperatures (SST) around the world as part of the Global Drifter Program. Drifter locations are estimated from 16-20 satellite fixes per day, per drifter. The Drifter Data Assembly Center (DAC) at NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) assembles these raw data, applies quality control procedures, and interpolates them via kriging to regular six-hour intervals. The raw observations and processed data are archived at AOML and at the Marine Environmental Data Services (MEDS) in Canada. Two types of data are available: "metadata" contains deployment location and time, time of drogue (sea anchor) loss, date of final transmission, etc. for each drifter. "Interpolated data" contains the quality-controlled, interpolated drifter observations.
To understand the global surface energy budget is to understand climate. Because it is impractical to cover the earth with monitoring stations, the answer to global coverage lies in reliable satellite-based estimates. Efforts are underway at NASA and universities to develop algorithms to do this, but such projects are in their infancy. In concert with these ambitious efforts, accurate and precise ground-based measurements in differing climatic regions are essential to refine and verify the satellite-based estimates, as well as to support specialized research. To fill this niche, the Surface Radiation Budget Network (SURFRAD) was established in 1993 through the support of NOAA's Office of Global Programs.
TES is the first satellite instrument to provide simultaneous concentrations of carbon monoxide, ozone, water vapor and methane throughout Earth’s lower atmosphere. This lower atmosphere (the troposphere) is situated between the surface and the height at which aircraft fly, and is an important part of the atmosphere that we often impact with our activities.
The Land Processes Distributed Active Archive Center (LP DAAC) is a component of NASAs Earth Observing System (EOS) Data and Information System (EOSDIS). LP DAAC processes, archives, and distributes land data and products derived from the EOS sensors. Located just outside Sioux Falls, South Dakota, the LP DAAC handles data from three EOS instruments aboard two operational satellite platforms: ASTER and MODIS from Terra, and MODIS from Aqua. ASTER data are received, processed, distributed, and archived while MODIS land products are received, distributed, and archived.
Country
This data repository provides access to gravity wave observations of the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite. Information on stratospheric gravity wave activity is derived from radiance measurements in the 4.3 and 15 micron CO2 fundamental bands. The repository provides browse images and netCDF data files for the years 2002 to 2017 and is frequently updated.
-----<<<<< The repository is no longer available. This record is out-dated. >>>>>----- GEON is an open collaborative project that is developing cyberinfrastructure for integration of 3 and 4 dimensional earth science data. GEON will develop services for data integration and model integration, and associated model execution and visualization. Mid-Atlantic test bed will focus on tectonothermal, paleogeographic, and biotic history from the late-Proterozoicto mid-Paleozoic. Rockies test bed will focus on integration of data with dynamic models, to better understand deformation history. GEON will develop the most comprehensive regional datasets in test bed areas.
Search and access 201 data sets covering the Atmosphere, Ocean, Land and more. Explore climate indices, reanalyses and satellite data and understand their application to climate model metrics. This is the only data portal that combines data discovery, metadata, figures and world-class expertise on the strengths, limitations and applications of climate data.
OceanSITES is a worldwide system of long-term, deepwater reference stations measuring dozens of variables and monitoring the full depth of the ocean from air-sea interactions down to 5,000 meters. Since 1999, the international OceanSITES science team has shared both data and costs in order to capitalize on the enormous potential of these moorings. The growing network now consists of about 30 surface and 30 subsurface arrays. Satellite telemetry enables near real-time access to OceanSITES data by scientists and the public. OceanSITES moorings are an integral part of the Global Ocean Observing System. They complement satellite imagery and ARGO float data by adding the dimensions of time and depth.
Country
SISMER (Scientific Information Systems for the Sea) is Ifremer's service in charge of managing numerous marine databases and information systems which Ifremer is responsible for implementing. The information systems managed by SISMER range from CATDS (SMOS satellite data) to geoscience data (bathymetry, seismics, geological samples), not forgetting water column data (physics and chemistry, data for operational oceanography – Coriolis - Copernicus CMEMS), fisheries data (Harmonie), coastal environment data (Quadrige 2) and deep-sea environment data (Archimède). SISMER therefore plays a pivotal role in marine database management both for Ifremer and for many national, European and international projects.
Measurements Of Pollution In The Troposphere (MOPITT) was launched into sun-synchronous polar orbit on December 18, 1999, aboard TERRA, a NASA satellite orbiting 705 km above the Earth. MOPITT monitors changes in pollution patterns and the effects on Earth’s troposphere. MOPITT uses near-infrared radiation at 2.3 µm and thermal-infrared radiation at 4.7 µm to calculate atmospheric profiles of CO.
The Argo observational network consists of a fleet of 3000+ profiling autonomous floats deployed by about a dozen teams worldwide. WHOI has built about 10% of the global fleet. The mission lifetime of each float is about 4 years. During a typical mission, each float reports a profile of the upper ocean every 10 days. The sensors onboard record fundamental physical properties of the ocean: temperature and conductivity (a measure of salinity) as a function of pressure. The depth range of the observed profile depends on the local stratification and the float's mechanical ability to adjust it's buoyancy. The majority of Argo floats report profiles between 1-2 km depth. At each surfacing, measurements of temperature and salinity are relayed back to shore via satellite. Telemetry is usually received every 10 days, but floats at high-latitudes which are iced-over accumulate their data and transmit the entire record the next time satellite contact is established. With current battery technology, the best performing floats last 6+ years and record over 200 profiles.