Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 14 result(s)
BioPortal is an open repository of biomedical ontologies, a service that provides access to those ontologies, and a set of tools for working with them. BioPortal provides a wide range of such tools, either directly via the BioPortal web site, or using the BioPortal web service REST API. BioPortal also includes community features for adding notes, reviews, and even mappings to specific ontologies. BioPortal has four major product components: the web application; the API services; widgets, or applets, that can be installed on your own site; and a Virtual Appliance version that is available for download or through Amazon Web Services machine instance (AMI). There is also a beta release SPARQL endpoint.
Country
Species included in PlantTFDB 4.0 covers the main lineages of green plants. Therefore, PlantTFDB provides genomic TF repertoires across Viridiplantae. To provide comprehensive information for the TF family, a brief introduction and key references are presented for each family. Comprehensive annotations are made for each identified TF, including functional domains, 3D structures, gene ontology (GO), plant ontology (PO), expression information, expert-curated functional description, regulation information, interaction, conserved elements, references, and annotations in various databases such as UniProt, RefSeq, TransFac, STRING, and VISTA. By inferring orthologous groups and constructing phylogenetic trees, evolutionary relationships among identified TFs were inferred. In addition, PlantTFDB has a simple and user-friendly interface to allow users to query based on combined conditions or make sequence similarity search using BLAST. The new version PlantTFDB 5.0 has been incorporated into PlantRegMap http://plantregmap.gao-lab.org/.
MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human health and disease. The projects contributing to this resource are: Mouse Genome Database (MGD) Project, Gene Expression Database (GXD) Project, Mouse Tumor Biology (MTB) Database Project, Gene Ontology (GO) Project at MGI, MouseMine Project, MouseCyc Project at MGI
NetSlim is a resource of high-confidence signaling pathway maps derived from NetPath pathway reactions. 40-60% of the molecules and their reactions in NetPath pathways are available in NetSlim.
The GenitoUrinary Development Molecular Anatomy Project (GUDMAP) is a consortium of laboratories working to provide the scientific and medical community with tools to facilitate research. The key components are: (1) a molecular atlas of gene expression for the developing organs of the GenitoUrinary (GU) tract; (2) a high resolution molecular anatomy that highlights development of the GU system; (3) mouse strains to facilitate developmental and functional studies within the GU system; (4) tutorials describing GU organogenesis; and (5) rapid access to primary data via the GUDMAP database.
OMIM is a comprehensive, authoritative compendium of human genes and genetic phenotypes that is freely available and updated daily. OMIM is authored and edited at the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, under the direction of Dr. Ada Hamosh. Its official home is omim.org.
The Arabidopsis Information Resource (TAIR) maintains a database of genetic and molecular biology data for the model higher plant Arabidopsis thaliana . Data available from TAIR includes the complete genome sequence along with gene structure, gene product information, metabolism, gene expression, DNA and seed stocks, genome maps, genetic and physical markers, publications, and information about the Arabidopsis research community. Gene product function data is updated every two weeks from the latest published research literature and community data submissions. Gene structures are updated 1-2 times per year using computational and manual methods as well as community submissions of new and updated genes. TAIR also provides extensive linkouts from our data pages to other Arabidopsis resources.
The BioCyc database collection of Pathway/Genome Databases (PGDBs) provides a reference on the genomes and metabolic pathways of thousands of sequenced organisms. BioCyc PGDBs are generated by software that predict the metabolic pathways of completely sequenced organisms, predict which genes code for missing enzymes in metabolic pathways, and predict operons. BioCyc also integrates information from other bioinformatics databases, such as protein feature and Gene Ontology information from UniProt. The BioCyc website provides a suite of software tools for database searching and visualization, for omics data analysis, and for comparative genomics and comparative pathway questions. From 2016 on, access to the EcoCyc and MetaCyc databases will remain free. Subscriptions to the other 7,600 BioCyc databases will be available to institutions (e.g., libraries), and to individuals. Access to licensed databases via: https://biocyc.org/Product-summary.shtml.
=== !!!!! Due to changes in technology and funding, the RAD website is no longer available !!!!! ===
The European Genome-phenome Archive (EGA) is designed to be a repository for all types of sequence and genotype experiments, including case-control, population, and family studies. We will include SNP and CNV genotypes from array based methods and genotyping done with re-sequencing methods. The EGA will serve as a permanent archive that will archive several levels of data including the raw data (which could, for example, be re-analysed in the future by other algorithms) as well as the genotype calls provided by the submitters. We are developing data mining and access tools for the database. For controlled access data, the EGA will provide the necessary security required to control access, and maintain patient confidentiality, while providing access to those researchers and clinicians authorised to view the data. In all cases, data access decisions will be made by the appropriate data access-granting organisation (DAO) and not by the EGA. The DAO will normally be the same organisation that approved and monitored the initial study protocol or a designate of this approving organisation. The European Genome-phenome Archive (EGA) allows you to explore datasets from genomic studies, provided by a range of data providers. Access to datasets must be approved by the specified Data Access Committee (DAC).
This is CSDB version 1 merged from Bacterial (BCSDB) and Plant&Fungal (PFCSDB) databases. This database aims at provision of structural, bibliographic, taxonomic, NMR spectroscopic and other information on glycan and glycoconjugate structures of prokaryotic, plant and fungal origin. It has been merged from the Bacterial and Plant&Fungal Carbohydrate Structure Databases (BCSDB+PFCSDB). The key points of this service are: High coverage. The coverage for bacteria (up to 2016) and archaea (up to 2016) is above 80%. Similar coverage for plants and fungi is expected in the future. The database is close to complete up to 1998 for plants, and up to 2006 for fungi. Data quality. High data quality is achieved by manual curation using original publications which is assisted by multiple automatic procedures for error control. Errors present in publications are reported and corrected, when possible. Data from other databases are verified on import. Detailed annotations. Structural data are supplied with extended bibliography, assigned NMR spectra, taxon identification including strains and serogroups, and other information if available in the original publication. Services. CSDB serves as a platform for a number of computational services tuned for glycobiology, such as NMR simulation, automated structure elucidation, taxon clustering, 3D molecular modeling, statistical processing of data etc. Integration. CSDB is cross-linked to other glycoinformatics projects and NCBI databases. The data are exportable in various formats, including most widespread encoding schemes and records using GlycoRDF ontology. Free web access. Users can access the database for free via its web interface (see Help). The main source of data is retrospective literature analysis. About 20% of data were imported from CCSD (Carbbank, University of Georgia, Athens; structures published before 1996) with subsequent manual curation and approval. The current coverage is displayed in red on the top of the left menu. The time lag between the publication of new data and their deposition into CSDB is ca. 1 year. In the scope of bacterial carbohydrates, CSDB covers nearly all structures of this origin published up to 2016. Prokaryotic, plant and fungal means that a glycan was found in the organism(s) belonging to these taxonomic domains or was obtained by modification of those found in them. Carbohydrate means a structure composed of any residues linked by glycosidic, ester, amidic, ketal, phospho- or sulpho-diester bonds in which at least one residue is a sugar or its derivative.
Country
<<<!!!<<< 2017-06-02: We recently suffered a server failure and are working to bring the full ORegAnno website back online. In the meantime, you may download the complete database here: http://www.oreganno.org/dump/ ; Data are also available through UCSC Genome Browser (e.g., hg38 -> Regulation -> ORegAnno) https://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=686342163_2it3aVMQVoXWn0wuCjkNOVX39wxy&c=chr1&g=oreganno >>>!!!>>> The Open REGulatory ANNOtation database (ORegAnno) is an open database for the curation of known regulatory elements from scientific literature. Annotation is collected from users worldwide for various biological assays and is automatically cross-referenced against PubMED, Entrez Gene, EnsEMBL, dbSNP, the eVOC: Cell type ontology, and the Taxonomy database, where appropriate, with information regarding the original experimentation performed (evidence). ORegAnno further provides an open validation process for all regulatory annotation in the public domain. Assigned validators receive notification of new records in the database and are able to cross-reference the citation to ensure record integrity. Validators have the ability to modify any record (deprecating the old record and creating a new one) if an error is found. Further, any contributor to the database can comment on any annotation by marking errors, or adding special reports into function as they see fit. These features of ORegAnno ensure that the collection is of the highest quality and uniquely provides a dynamic view of our changing understanding of gene regulation in the various genomes.