Content Types


AID systems



Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


Metadata standards

PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 19 result(s)
National Institute of Information and Communications Technology (NICT) has taken charge of the WDC for Ionosphere. WDC for Ionosphere archives ionospheric data and metadata from approximately 250 stations across the globe.
CDAAC is responsible for processing the science data received from COSMIC. This data is currently being processed not long after the data is received, i.e. approximately eighty percent of radio occultation profiles are delivered to operational weather centers within 3 hours of observation as well as in a more accurate post-processed mode (within 8 weeks of observation).
Among the basic tasks of WDC for Geophysics, Beijing there is collection, handling and storage of science data and giving access to it for usage both in science research and study process. That includes remote access to own information resources for the scientists from the universities and institutions.
SuperDARN is an international HF radar network designed to measure global-scale magnetospheric convection by observing plasma motion in the Earth’s upper atmosphere. This network consists of more than 20 radars operating on frequencies between 8 and 20 MHz that look into the polar regions of Earth. These radars can measure the position and velocity of charged particles in our ionosphere, the highest layer of the Earth's atmosphere, and provide scientists with information regarding Earth's interaction with the space environment.
WDC for STP, Moscow collects, stores, exchanges with other WDCs, disseminates the publications, sends upon requests data on the following Solar-Terrestrial Physics disciplines: Solar Activity and Interplanetary Medium, Cosmic Rays, Ionospheric Phenomena, Geomagnetic Variations.
NSSDC is the nation-level space science data center which recognized by the Ministry of Science and Technology of China. As a repository for space science data, NSSDC assumes the responsibility of the long-term stewardship and offering a reliable service of space science data in China. It also has been the Chinese center for space science of the World Data Center (WDC) since 1988. In 2013, NSSDC became a regular member of World Data System. Data resources are concentrated in the following fields of space physics and space environment, space astronomy, lunar and planetary science, space application and engineering. In space physics, the NSSDC maintains space-based observation data and ground-based observation data of the middle and upper atmosphere, ionosphere and earth surface, from Geo-space Double Star Exploration Program and Meridian Project. In space astronomy, NSSDC archived pointed observation data of Hard X-ray Modulation Telescope. In lunar and planetary science, space application and engineering, NSSDC also collects detection data of Chang’E from Lunar Exploration Program and science products of BeiDou satellites.
>>>!!!<<<The repository is offline >>>!!!<<< The Space Physics Interactive Data Resource from NOAA's National Geophysical Data Center allows solar terrestrial physics customers to intelligently access and manage historical space physics data for integration with environment models and space weather forecasts.
The task of WDC geomagnetism is to collect geomagnetic data from all over the globe and distribute those data to researchers and data users, as a World Data Center for Geomagnetism.
The DCS allows you to search a catalogue of metadata (information describing data) to discover and gain access to NERC's data holdings and information products. The metadata are prepared to a common NERC Metadata Standard and are provided to the catalogue by the NERC Data Centres.
The OpenMadrigal project seeks to develop and support an on-line database for geospace data. The project has been led by MIT Haystack Observatory since 1980, but now has active support from Jicamarca Observatory and other community members. Madrigal is a robust, World Wide Web based system capable of managing and serving archival and real-time data, in a variety of formats, from a wide range of ground-based instruments. Madrigal is installed at a number of sites around the world. Data at each Madrigal site is locally controlled and can be updated at any time, but shared metadata between Madrigal sites allow searching of all Madrigal sites at once from any Madrigal site. Data is local; metadata is shared.
The World Data Centre section provides software and data catalogue information and data produced by IPS Radio and Space Services over the past few past decades. You can download data files, plot graphs from data files, check data availability, retrieve data sets and station information.
The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership based at the NASA Goddard Space Flight Center in Greenbelt, Maryland and a component of the National Space Weather Program. The CCMC provides, to the international research community, access to modern space science simulations. In addition, the CCMC supports the transition to space weather operations of modern space research models.
UNAVCO promotes research by providing access to data that our community of geodetic scientists uses for quantifying the motions of rock, ice and water that are monitored by a variety of sensor types at or near the Earth's surface. After processing, these data enable millimeter-scale surface motion detection and monitoring at discrete points, and high-resolution strain imagery over areas of tens of square meters to hundreds of square kilometers. The data types include GPS/GNSS, imaging data such as from SAR and TLS, strain and seismic borehole data, and meteorological data. Most of these can be accessed via web services. In addition, GPS/GNSS datasets, TLS datasets, and InSAR products are assigned digital object identifiers.
The IGS global system of satellite tracking stations, Data Centers, and Analysis Centers puts high-quality GPS data and data products on line in near real time to meet the objectives of a wide range of scientific and engineering applications and studies. The IGS collects, archives, and distributes GPS observation data sets of sufficient accuracy to satisfy the objectives of a wide range of applications and experimentation. These data sets are used by the IGS to generate the data products mentioned above which are made available to interested users through the Internet. In particular, the accuracies of IGS products are sufficient for the improvement and extension of the International Terrestrial Reference Frame (ITRF), the monitoring of solid Earth deformations, the monitoring of Earth rotation and variations in the liquid Earth (sea level, ice-sheets, etc.), for scientific satellite orbit determinations, ionosphere monitoring, and recovery of precipitable water vapor measurements.
The UK Solar System Data Centre (UKSSDC) provides a STFC and NERC jointly funded central archive and data centre facility for Solar System science in the UK. The facilities include the World Data Centre for Solar-Terrestrial Physics, Chilton and the Cluster Ground-Based Data Centre. The UKSSDC supports data archives for the whole UK solar system community encompassing solar, inter-planetary, magnetospheric, ionospheric and geomagnetic science. The UKSSDC is part of RAL Space based at the STFC run Rutherford Appleton Laboratory in Oxfordshire.
Within the RESIF-EPOS observation research infrastructure and the Action Spécifique RESIF-GNSS action, the Reseau National GNSS permanent (RENAG) is the network of GNSS observation stations of French universities and research organizations. It is currently composed of 85 GNSS stations (Global Navigation Satellite System such as GPS, GLONASS, Galileo). The scientific objectives of RESIF-RENAG range from the quantification of the slow deformation in France to the sounding of the atmosphere (troposphere and ionosphere), through the measurement of sea-level variations and the characterization of transient movements related to overloads. Data production is carried out in a distributed way by the laboratories and organizations that manage the stations. 12 teams are specifically in charge of station maintenance and of accurately filling in the metadata files. A single data center, RENAG-DC, hosted at the Observatoire de la Côte d'Azur (OCA) within the Geoazur laboratory, is in charge of data management, from their collection to their distribution in the standard RINEX format (
The Centre for Environmental Data Analysis (CEDA) serves the environmental science community through managing data centres, data analysis environments, and participation in a host of relevant research projects. We aim to support environmental science, further environmental data archival practices, and develop and deploy new technologies to enhance access to data. Additionally we provide services to aid large scale data analysis. The CEDA Archive operates the atmospheric and earth observation data centre functions on behalf of NERC for the UK atmospheric science and earth observation communities. It covers climate, composition, observations and NWP data as well as various earth observation datasets, including airborne and satellite data and imagery. Prior to November 2016 these functions were operted by CEDA under the titles of the British Atmospheric Data Centre (BADC) and the NERC Earth Observation Data Centre (NEODC). CEDA also operates the UK Solar System Data Centre (UKSSDC), which curates and provides access to archives of data from the upper atmosphere, ionosphere and Earth's solar environment.
CHAMP (CHAllenging Minisatellite Payload) is a German small satellite mission for geoscientific and atmospheric research and applications, managed by GFZ. With its highly precise, multifunctional and complementary payload elements (magnetometer, accelerometer, star sensor, GPS receiver, laser retro reflector, ion drift meter) and its orbit characteristics (near polar, low altitude, long duration) CHAMP will generate for the first time simultaneously highly precise gravity and magnetic field measurements over a 5 years period. This will allow to detect besides the spatial variations of both fields also their variability with time. The CHAMP mission had opened a new era in geopotential research and had become a significant contributor to the Decade of Geopotentials. In addition with the radio occultation measurements onboard the spacecraft and the infrastructure developed on ground, CHAMP had become a pilot mission for the pre-operational use of space-borne GPS observations for atmospheric and ionospheric research and applications in weather prediction and space weather monitoring. End of the mission of CHAMP was at September 19 2010, after ten years, two month and four days, after 58277 orbits.
The International Service of Geomagnetic Indices (ISGI) is in charge of the elaboration and dissemination of geomagnetic indices, and of tables of remarkable magnetic events, based on the report of magnetic observatories distributed all over the planet, with the help of ISGI Collaborating Institutes. The interaction between the solar wind, including plasma and interplanetary magnetic field, and the Earth's magnetosphere results in a transfer of energy and particles inside the magnetosphere. Solar wind characteristics are highly variable, and they have actually a direct influence on the shape and size of the magnetosphere, on the amount of transferred energy, and on the way this energy is dissipated. It is clear that the great diversity of sources of magnetic variations give rise to a great complexity in ground magnetic signatures. Geomagnetic indices aim at describing the geomagnetic activity or some of its components. Each geomagnetic index is related to different phenomena occurring in the magnetosphere, ionosphere and deep in the Earth in its own unique way. The location of a measurement, the timing of the measurement and the way the index is calculated all affect the type of phenomenon the index relates to. The IAGA endorsed geomagnetic indices and lists of remarkable geomagnetic events constitute unique temporal and spatial coverage data series homogeneous since middle of 19th century.