Reset all


Content Types


AID systems


Data access

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 12 result(s)
TOXNET (TOXicology Data NETwork) is a group of databases covering chemicals and drugs, diseases and the environment, environmental health, occupational safety and health, poisoning, risk assessment and regulations, and toxicology. Information in the TOXNET databases covers: Specific chemicals, mixtures, and products; Chemical nomenclature; Unknown chemicals; Special toxic effects of chemicals in humans and/or animals; Citations from the scientific literature.
The Cellular Phenotype database stores data derived from high-throughput phenotypic studies and it is being developed as part of the Systems Microscopy Network of Excellence project. The aim of the Cellular Phenotype database is to provide easy access to phenotypic data and facilitate the integration of independent phenotypic studies. Through its interface, users can search for a gene of interest, or a collection of genes, and retrieve the loss-of-function phenotypes observed, in human cells, by suppressing the expression of the selected gene(s), through RNA interference (RNAi), across independent phenotypic studies. Similarly, users can search for a phenotype of interest and retrieve the RNAi reagents that have caused such phenotype and the associated target genes. Information about specific RNAi reagents can also be obtained when searching for a reagent ID.
The Genome database contains annotations and analysis of eukaryotic and prokaryotic genomes, as well as tools that allow users to compare genomes and gene sequences from humans, microbes, plants, viruses and organelles. Users can browse by organism, and view genome maps and protein clusters.
The Taenia solium genome project is a whole genome sequencing project of the parasite Taenia solium, the causal agent of human and porcine cysticercosis; a disease that is still a public health problem of relevance in Mexico. It is being carried out by a consortium of scientists belonging to diverse institutions of the Universidad Nacional Autónoma de México (UNAM, the National Autonomous University of Mexico).
The Exome Aggregation Consortium (ExAC) is a coalition of investigators seeking to aggregate and harmonize exome sequencing data from a wide variety of large-scale sequencing projects, and to make summary data available for the wider scientific community. The data set provided on this website spans 60,706 unrelated individuals sequenced as part of various disease-specific and population genetic studies.
PDBj (Protein Data Bank Japan) provides a centralized PDB archive of macromolecular structures, integrated tools for data retrieval, visualization, and functional characterization. PDBj is supported by JST-NBDC and Osaka University.
The Protein Data Bank (PDB) is an archive of experimentally determined three-dimensional structures of biological macromolecules that serves a global community of researchers, educators, and students. The data contained in the archive include atomic coordinates, crystallographic structure factors and NMR experimental data. Aside from coordinates, each deposition also includes the names of molecules, primary and secondary structure information, sequence database references, where appropriate, and ligand and biological assembly information, details about data collection and structure solution, and bibliographic citations. The Worldwide Protein Data Bank (wwPDB) consists of organizations that act as deposition, data processing and distribution centers for PDB data. Members are: RCSB PDB (USA), PDBe (Europe) and PDBj (Japan), and BMRB (USA). The wwPDB's mission is to maintain a single PDB archive of macromolecular structural data that is freely and publicly available to the global community.
CCRIS contains over 9,000 chemical records with carcinogenicity, mutagenicity, tumor promotion, and tumor inhibition test results. Data are derived from studies cited in primary journals, current awareness tools, NCI reports, and other special sources. Test results have been reviewed by experts in carcinogenesis and mutagenesis.
With the creation of the Metabolomics Data Repository managed by Data Repository and Coordination Center (DRCC), the NIH acknowledges the importance of data sharing for metabolomics. Metabolomics represents the systematic study of low molecular weight molecules found in a biological sample, providing a "snapshot" of the current and actual state of the cell or organism at a specific point in time. Thus, the metabolome represents the functional activity of biological systems. As with other ‘omics’, metabolites are conserved across animals, plants and microbial species, facilitating the extrapolation of research findings in laboratory animals to humans. Common technologies for measuring the metabolome include mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), which can measure hundreds to thousands of unique chemical entities. Data sharing in metabolomics will include primary raw data and the biological and analytical meta-data necessary to interpret these data. Through cooperation between investigators, metabolomics laboratories and data coordinating centers, these data sets should provide a rich resource for the research community to enhance preclinical, clinical and translational research.
FANTOM stands for 'Functional Annotation of the Mammalian Genome' and is the name of an international research consortium organized by the RIKEN Omics Science Center. The FANTOM5 project aims to build a full understanding of transcriptional regulation in a human system by generating transcriptional regulatory networks that define every human cell type.
Tthe Lipidomics Gateway - a free, comprehensive website for researchers interested in lipid biology, provided by the LIPID MAPS (Lipid Metabolites and Pathways Strategy) Consortium. The LIPID MAPS Lipidomics Gateway provides a rich collection of information and resources to help you stay abreast of the latest developments in this rapidly expanding field. LIPID Metabolites And Pathways Strategy (LIPID MAPS®) is a multi-institutional effort created in 2003 to identify and quantitate, using a systems biology approach and sophisticated mass spectrometers, all of the major — and many minor — lipid species in mammalian cells, as well as to quantitate the changes in these species in response to perturbation. The ultimate goal of our research is to better understand lipid metabolism and the active role lipids play in diabetes, stroke, cancer, arthritis, Alzheimer's and other lipid-based diseases in order to facilitate development of more effective treatments. Since our inception, we have made great strides toward defining the "lipidome" (an inventory of the thousands of individual lipid molecular species) in the mouse macrophage. We have also worked to make lipid analysis easier and more accessible for the broader scientific community and to advance a robust research infrastructure for the international research community. We share new lipidomics findings and methods, hold annual meetings open to all interested investigators, and are exploring joint efforts to extend the use of these powerful new methods to new applications