Reset all


Content Types


AID systems



Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


Metadata standards

PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 55 result(s)
GroupLens is a research lab in the Department of Computer Science and Engineering at the University of Minnesota, Twin Cities specializing in recommender systems, online communities, mobile and ubiquitous technologies, digital libraries, and local geographic information systems.
The CMU Multi-Modal Activity Database (CMU-MMAC) database contains multimodal measures of the human activity of subjects performing the tasks involved in cooking and food preparation. The CMU-MMAC database was collected in Carnegie Mellon's Motion Capture Lab. A kitchen was built and to date twenty-five subjects have been recorded cooking five different recipes: brownies, pizza, sandwich, salad, and scrambled eggs.
The National Science Digital Library provides high quality online educational resources for teaching and learning, with current emphasis on the sciences, technology, engineering, and mathematics (STEM) disciplines—both formal and informal, institutional and individual, in local, state, national, and international educational settings. The NSDL collection contains structured descriptive information (metadata) about web-based educational resources held on other sites by their providers. These providers have contribute this metadata to NSDL for organized search and open access to educational resources via this website and its services.
OLAC, the Open Language Archives Community, is an international partnership of institutions and individuals who are creating a worldwide virtual library of language resources by: (i) developing consensus on best current practice for the digital archiving of language resources, and (ii) developing a network of interoperating repositories and services for housing and accessing such resources.
CLARIN is a European Research Infrastructure for the Humanities and Social Sciences, focusing on language resources (data and tools). It is being implemented and constantly improved at leading institutions in a large and growing number of European countries, aiming at improving Europe's multi-linguality competence. CLARIN provides several services, such as access to language data and tools to analyze data, and offers to deposit research data, as well as direct access to knowledge about relevant topics in relation to (research on and with) language resources. The main tool is the 'Virtual Language Observatory' providing metadata and access to the different national CLARIN centers and their data.
BABS include digital reproductions from the digitization of the Munich Digitisation CenterMunich Digitization Center/Digital Library of the Bavarian State Library including digital reproductions from copyright-free works from the BSB collections created by cooperation partners or service providers, such as digital copies from the The google-ProjectGoogle project; official publications of authorities, departments and agencies of the State of Bavaria according to the "Bavarian State Promulgation 2 December 2008 (Az.: B II 2-480-30)" on the delivery of official publications to libraries, the Promulgation Platform Bavaria (Verkündungsplattform), as well as voluntary deliveries of electronic publications of different (mainly Bavarian scientific) publishing houses and other publishers; scientifically relevant literature (open access publications and websites) of national and international origin in the Areas of Collection Emphasis of the BSB (history including classical studies, Eastern Europe, history of France and Italy, music, library science, book studies and information science) as well as Bavarica; electronic publications produced by the BSB specialist departments, especially those of the Center for Electronic Publishing (ZEP); local/regional/national licensed or purchased electronic publications
The Research Collection is ETH Zurich's publication platform. It unites the functions of a university bibliography, an open access repository and a research data repository within one platform. Researchers who are affiliated with ETH Zurich, the Swiss Federal Institute of Technology, may deposit research data from all domains. They can publish data as a standalone publication, publish it as supplementary material for an article, dissertation or another text, share it with colleagues or a research group, or deposit it for archiving purposes. Research-data-specific features include flexible access rights settings, DOI registration and a DOI preview workflow, content previews for zip- and tar-containers, as well as download statistics and altmetrics for published data. All data uploaded to the Research Collection are also transferred to the ETH Data Archive, ETH Zurich’s long-term archive.
The Alternative Fuels Data Center (AFDC) is a comprehensive clearinghouse of information about advanced transportation technologies. The AFDC offers transportation decision makers unbiased information, data, and tools related to the deployment of alternative fuels and advanced vehicles. The AFDC launched in 1991 in response to the Alternative Motor Fuels Act of 1988 and the Clean Air Act Amendments of 1990. It originally served as a repository for alternative fuel performance data. The AFDC has since evolved to offer a broad array of information resources that support efforts to reduce petroleum use in transportation. The AFDC serves Clean Cities stakeholders, fleets regulated by the Energy Policy Act, businesses, policymakers, government agencies, and the general public.
Stanford Network Analysis Platform (SNAP) is a general purpose network analysis and graph mining library. It is written in C++ and easily scales to massive networks with hundreds of millions of nodes, and billions of edges. It efficiently manipulates large graphs, calculates structural properties, generates regular and random graphs, and supports attributes on nodes and edges. SNAP is also available through the NodeXL which is a graphical front-end that integrates network analysis into Microsoft Office and Excel. The SNAP library is being actively developed since 2004 and is organically growing as a result of our research pursuits in analysis of large social and information networks. Largest network we analyzed so far using the library was the Microsoft Instant Messenger network from 2006 with 240 million nodes and 1.3 billion edges. The datasets available on the website were mostly collected (scraped) for the purposes of our research. The website was launched in July 2009.
The UWA Research Repository contains research publications, research datasets and theses created by researchers and postgraduates affiliated with UWA. It is managed by the University Library and provides access to research datasets held at the University of Western Australia. The information about each dataset has been provided by UWA research groups. Dataset metadata is harvested into Research Data Australia (RDA: Language: The user interface language of the research data repository.
The figshare service for Monash University, Australia was launched in 2014 and allows researchers to store, share and publish research data. It helps the research data to be accessible by storing Metadata alongside datasets. Additionally, every uploaded item receives a Digital Object identifier (DOI), which allows the data to be citable and sustainable. If there are any ethical or copyright concerns about publishing a certain dataset, it is possible to publish the metadata associated with the dataset to help discoverability while sharing the data itself via a private channel through manual approval.
LINDAT/CLARIN is designed as a Czech “node” of Clarin ERIC (Common Language Resources and Technology Infrastructure). It also supports the goals of the META-NET language technology network. Both networks aim at collection, annotation, development and free sharing of language data and basic technologies between institutions and individuals both in science and in all types of research. The Clarin ERIC infrastructural project is more focused on humanities, while META-NET aims at the development of language technologies and applications. The data stored in the repository are already being used in scientific publications in the Czech Republic.
Edmond is the institutional repository of the Max Planck Society for public research data. It enables Max Planck scientists to create citable scientific assets by describing, enriching, sharing, exposing, linking, publishing and archiving research data of all kinds. A unique feature of Edmond is the dedicated metadata management, which supports a non-restrictive metadata schema definition, as simple as you like or as complex as your parameters require. Further on, all objects within Edmond have a unique identifier and therefore can be clearly referenced in publications or reused in other contexts.
In order to meet the needs of research data management for Peking University. The PKU library cooperate with the NSFC-PKU data center for management science, PKU science and research department, PKU social sciences department to jointly launch the Peking University Open Research Data Platform. PKU Open research data provides preservation, management and distribution services for research data. It encourage data owner to share data and data users to reuse data.
The UCI Machine Learning Repository is a collection of databases, domain theories, and data generators that are used by the machine learning community for the empirical analysis of machine learning algorithms. It is used by students, educators, and researchers all over the world as a primary source of machine learning data sets. As an indication of the impact of the archive, it has been cited over 1000 times.
ETH Data Archive is ETH Zurich's long-term preservation solution for digital information such as research data, documents or images. It serves as the backbone of data curation and for most of its content, it is a “dark archive” without public access. In this capacity, the ETH Data Archive also archives the content of ETH Zurich’s Research Collection which is the primary repository for members of the university and the first point of contact for publication of data at ETH Zurich. All data that was produced in the context of research at the ETH Zurich, can be published and archived in the Research Collection. In the following cases, a direct data upload into the ETH Data Archive though, has to be considered: - Upload and registration of software code according to ETH transfer’s requirements for Software Disclosure. - A substantial number of files, have to be regularly submitted for long-term archiving and/or publishing and browser-based upload is not an option: the ETH Data Archive may offer automated data and metadata transfers from source applications (e.g. from a LIMS) via API. - Files for a project on a local computer have to be collected and metadata has to be added before uploading the data to the ETH Data Archive: -- we provide you with the local file editor docuteam packer. Docuteam packer allows to structure, describe, and organise data for an upload into the ETH Data Archive and the depositor decides when submission is due.
KONECT (the Koblenz Network Collection) is a project to collect large network datasets of all types in order to perform research in network science and related fields, collected by the Institute of Web Science and Technologies at the University of Koblenz–Landau. KONECT contains over a hundred network datasets of various types, including directed, undirected, bipartite, weighted, unweighted, signed and rating networks. The networks of KONECT are collected from many diverse areas such as social networks, hyperlink networks, authorship networks, physical networks, interaction networks and communication networks. The KONECT project has developed network analysis tools which are used to compute network statistics, to draw plots and to implement various link prediction algorithms. The result of these analyses are presented on these pages. Whenever we are allowed to do so, we provide a download of the networks.
The figshare service for The Open University was launched in 2016 and allows researchers to store, share and publish research data. It helps the research data to be accessible by storing metadata alongside datasets. Additionally, every uploaded item receives a Digital Object Identifier (DOI), which allows the data to be citable and sustainable. If there are any ethical or copyright concerns about publishing a certain dataset, it is possible to publish the metadata associated with the dataset to help discoverability while sharing the data itself via a private channel through manual approval.
The University of Cape Town (UCT) uses Figshare for institutions for their data repository, which was launched in 2017 and is called ZivaHub: Open Data UCT. ZivaHub serves principal investigators at the University of Cape Town who are in need of a repository to store and openly disseminate the data that support their published research findings. The repository service is provided in terms of the UCT Research Data Management Policy. It provides open access to supplementary research data files and links to their respective scholarly publications (e.g. theses, dissertations, papers et al) hosted on other platforms, such as OpenUCT.
Kaggle is a platform for predictive modelling and analytics competitions in which statisticians and data miners compete to produce the best models for predicting and describing the datasets uploaded by companies and users. This crowdsourcing approach relies on the fact that there are countless strategies that can be applied to any predictive modelling task and it is impossible to know beforehand which technique or analyst will be most effective.