Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 4 result(s)
Country
The repository is no longer available. <<<!!!<<< 2018-08-29: no more access to GAPHYOR >>>!!!>>> Important note: The database was no longer feeded with data or updated in the years 2005-2007. The financial support of the project had been stopped a few yers ahead that time. The maintainance of the IT system couldn't be ensured anymore and system was shutdown in 2015. Please see the other databases in the field.
Nuclear Data Services contains atomic, molecular and nuclear data sets for the development and maintenance of nuclear technologies. It includes energy-dependent reaction probabilities (cross sections), the energy and angular distributions of reaction products for many combinations of target and projectile, and the atomic and nuclear properties of excited states, and their radioactive decay data. Their main concern is providing data required to design a modern nuclear reactor for electricity production. Approximately 11.5 million nuclear data points have been measured and compiled into computerized form.
AtomDB is an atomic database useful for X-ray plasma spectral modeling. The current version of AtomDB is primarly used for modeing collisional plasmas, those where hot electrons colliding with astrophysically abundant elements and ions create X-ray emission. However, AtomDB is also useful when modeling absorption by elements and ions or even photoionized plasmas, where X-ray photons (often from a simple power-law source) interacting with elements and ions create complex spectra.
The ADAS Project is a self-funding (i.e. funded by participants) project consisting of most major fusion laboratories along with other astrophysical and university groups. As an implementation, it is an interconnected set of computer codes and data collections for modelling the radiating properties of ions and atoms in plasmas. It can address plasmas ranging from the interstellar medium through the solar atmosphere and laboratory thermonuclear fusion devices to technological plasmas. ADAS assists in the analysis and interpretation of spectral emission and supports detailed plasma models.