Reset all


Content Types


AID systems



Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


Metadata standards

PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 10 result(s)
Physical Reference Data compiles physical data and biblographic sources: Physical constants, atomic spectroscopy data, molecular spectroscopic data, X-Ray and Gamma-Ray data, nuclear physics data etc.
The Durham High Energy Physics Database (HEPData), formerly: the Durham HEPData Project, has been built up over the past four decades as a unique open-access repository for scattering data from experimental particle physics. It currently comprises the data points from plots and tables related to several thousand publications including those from the Large Hadron Collider (LHC). The Durham HepData Project has for more than 25 years compiled the Reactions Database containing what can be loosly described as cross sections from HEP scattering experiments. The data comprise total and differential cross sections, structure functions, fragmentation functions, distributions of jet measures, polarisations, etc... from a wide range of interactions. In the new HEPData site (, you can explore new functionalities for data providers and data consumers, as well as the submission interface. HEPData is operated by CERN and IPPP at Durham University and is based on the digital library framework Invenio.
SSHADE is an interoperable Solid Spectroscopy database infrastructure ( providing spectral and photometric data obtained by various spectroscopic techniques over the whole electromagnetic spectrum from gamma to radio wavelengths, through X, UV, Vis, IR, and mm ranges. The measured samples include ices, minerals, rocks, organic and carbonaceous materials... and also liquids. They are either synthesized in the laboratory, natural terrestrial analogs collected or measured in the field, or extraterrestrial samples collected on Earth or on planetary bodies: (micro-)meteorites, IDPs, lunar soils... SSHADE contains a set of specialized databases from various research groups, mostly from Europe. It is developed under the H2020 European programs* "Europlanet 2020 RI" and now "Europlanet 2024 RI" with the help of OSUG, CNRS/INSU, IPAG, and CNES. It is hosted by the OSUG data center / Université Grenoble Alpes, France. It can also be searched through the Virtual European Solar and Planetary Access (VESPA) virtual observatory.
Edmond is the institutional repository of the Max Planck Society for public research data. It enables Max Planck scientists to create citable scientific assets by describing, enriching, sharing, exposing, linking, publishing and archiving research data of all kinds. Further on, all objects within Edmond have a unique identifier and therefore can be clearly referenced in publications or reused in other contexts.
The Square Kilometre Array (SKA) is a radio telescope with around one million square metres of collecting area, designed to study the Universe with unprecedented speed and sensitivity. The SKA is not a single telescope, but a collection of various types of antennas, called an array, to be spread over long distances. The SKA will be used to answer fundamental questions of science and about the laws of nature, such as: how did the Universe, and the stars and galaxies contained in it, form and evolve? Was Einstein’s theory of relativity correct? What is the nature of ‘dark matter’ and ‘dark energy’? What is the origin of cosmic magnetism? Is there life somewhere else in the Universe?
Interface to Los Alamos Atomic Physics Codes is your gateway to the set of atomic physics codes developed at the Los Alamos National Laboratory. The well known Hartree-Fock method of R.D. Cowan, developed at Group home page of the Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated.
Online materials database (known as PAULING FILE project) with nearly 2 million entries: physical properties, crystal structures, phase diagrams, available via API, ready for modern data-intensive applications. The source of these entries are about 0.5M peer-reviewed publications in materials science, processed during the last 30 years by an international team of PhD editors. The results are presented online with a quick search interface. The basic access is provided for free.
The portal offers a Data Repository of the JKUs Magnetic Oxides Group and provides access to the latest research data of the Magnetic Oxide research group of the Johannes Kepler University in Linz, Austria. The Repository contains Datasets in the following research areas: Dilute magnetic semiconductors and oxides, Ferromagnetic thin films and nanoparticles, X-ray absorption spectroscopy, Element-selective structure and magnetism, Functional heterostructures and interfaces, and Frequency-dependent magnetic resonance.
<<<!!!<<< The repository is offline >>>!!!>>> Store.Synchrotron is a fully functional, cloud computing based solution to raw X-ray data archival and dissemination at the Australian Synchrotron, largest stand-alone piece of scientific infrastructure in the southern hemisphere. Store.Synchrotron represents the logical extension of a long-standing effort in the macromolecular crystallography community to ensure that satisfactory evidence is provided to support the interpretation of structural experiments.
<<<!!!<<< This repository is no longer available. >>>!!!>>>The Deep Carbon Observatory (DCO) is a global community of multi-disciplinary scientists unlocking the inner secrets of Earth through investigations into life, energy, and the fundamentally unique chemistry of carbon. Deep Carbon Observatory Digital Object Registry (“DCO-VIVO”) is a centrally-managed digital object identification, object registration and metadata management service for the DCO. Digital object registration includes DCO-ID generation based on the global Handle System infrastructure and metadata collection using VIVO. Users will be able to deposit their data into the DCO Data Repository and have that data discoverable and accessible by others.