Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 73 result(s)
Country
The arctic data archive system (ADS) collects observation data and modeling products obtained by various Japanese research projects and gives researchers to access the results. By centrally managing a wide variety of Arctic observation data, we promote the use of data across multiple disciplines. Researchers use these integrated databases to clarify the mechanisms of environmental change in the atmosphere, ocean, land-surface and cryosphere. That ADS will be provide an opportunity of collaboration between modelers and field scientists, can be expected.
The ASTER Project consists of two parts, each having a Japanese and a U.S. component. Mission operations are split between Japan Space Systems (J-spacesystems) and the Jet Propulsion Laboratory (JPL) in the U.S. J-spacesystems oversees monitoring instrument performance and health, developing the daily schedule command sequence, processing Level 0 data to Level 1, and providing higher level data processing, archiving, and distribution. The JPL ASTER project provides scheduling support for U.S. investigators, calibration and validation of the instrument and data products, coordinating the U.S. Science Team, and maintaining the science algorithms. The joint Japan/U.S. ASTER Science Team has about 40 scientists and researchers. Data access via NASA Reverb, ASTER Japan site, earth explorer, GloVis,GDEx and LP DAAC. See here https://asterweb.jpl.nasa.gov/data.asp. In Addition data are availabe through the newly implemented ASTER Volcano archive (AVA) https://ava.jpl.nasa.gov/ .
The ASTER Volcano Archive (AVA) is the worlds largest specialty archive of volcano data. For 1,549 recently active volcanos listed by the Smithsonian Global Volcanism Program, the AVA has collected the entirety of high-resolution multispectral ASTER data and made it available to the public. Also included are digital elevation maps, NOAA ash advisories, alteration zone imagery, and thermal anomaly reports. LANDSAT7 data are also being processed.
Country
Australian Ocean Data Network (AODN) provides data collected by the Australian marine community. AODN's data is searchable via map interface and metadata catalogue. AODN is Australia's exhaustive repository for marine and climate data. AODN has merged with IMOS eMarine Information Infrastructure (eMII) Facility in May 2016. IMOS is a multi-institutional collaboration with a focus on open data access. It is ideally placed to manage the AODN on behalf of the Australian marine and climate community.
Country
CHAMP (CHAllenging Minisatellite Payload) is a German small satellite mission for geoscientific and atmospheric research and applications, managed by GFZ. With its highly precise, multifunctional and complementary payload elements (magnetometer, accelerometer, star sensor, GPS receiver, laser retro reflector, ion drift meter) and its orbit characteristics (near polar, low altitude, long duration) CHAMP will generate for the first time simultaneously highly precise gravity and magnetic field measurements over a 5 years period. This will allow to detect besides the spatial variations of both fields also their variability with time. The CHAMP mission had opened a new era in geopotential research and had become a significant contributor to the Decade of Geopotentials. In addition with the radio occultation measurements onboard the spacecraft and the infrastructure developed on ground, CHAMP had become a pilot mission for the pre-operational use of space-borne GPS observations for atmospheric and ionospheric research and applications in weather prediction and space weather monitoring. End of the mission of CHAMP was at September 19 2010, after ten years, two month and four days, after 58277 orbits.
Climate4impact: a dedicated interface to ESGF for the climate impact community The portal Climate4impact, part of the ENES Data Infrastructure, provides access to data and quick looks of global and regional climate models and downscaled higher resolution climate data. The portal provides data transformation tooling and mapping & plotting capabilities, guidance, documentation, FAQ and examples. The Climate4Impact portal will be further developed during the IS-ENES3 project (2019-2023)and moved to a different environment. Meanwhile the portal at https://climate4impact.eu will remain available, but no new information or processing options will be included. When the new portal will become available this will be announced on https://is.enes.org/.
The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols play in regulating Earth's weather, climate, and air quality. CALIPSO combines an active lidar instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. CALIPSO was launched on April 28, 2006, with the CloudSat satellite. CALIPSO and CloudSat are highly complementary and together provide new, never-before-seen 3D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO and CloudSat fly in formation with three other satellites in the A-train constellation to enable an even greater understanding of our climate system.
Copernicus is a European system for monitoring the Earth. Copernicus consists of a complex set of systems which collect data from multiple sources: earth observation satellites and in situ sensors such as ground stations, airborne and sea-borne sensors. It processes these data and provides users with reliable and up-to-date information through a set of services related to environmental and security issues. The services address six thematic areas: land monitoring, marine monitoring, atmosphere monitoring, climate change, emergency management and security. The main users of Copernicus services are policymakers and public authorities who need the information to develop environmental legislation and policies or to take critical decisions in the event of an emergency, such as a natural disaster or a humanitarian crisis. Based on the Copernicus services and on the data collected through the Sentinels and the contributing missions , many value-added services can be tailored to specific public or commercial needs, resulting in new business opportunities. In fact, several economic studies have already demonstrated a huge potential for job creation, innovation and growth.
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.
>>> the repository is offline <<< The Detection of Archaeological Residues using Remote-sensing Techniques (DART) project was initiated in 2010 in order to investigate the ability of various sensors to detect archaeological features in ‘difficult’ circumstances. Concluding in September 2013, DART had the overall aim of developing analytical methods for identifying and quantifying gradual changes and dynamics in sensor responses associated with surface and near-surface archaeological features under different environmental and land-management conditions.
GRID-Geneva is a unique platform providing analyses and solutions for a wide range of environmental issues. GRID-Geneva serves primarily the needs of its three institutional partners - UNEP, the Swiss Federal Office for the Environment (FOEN) and the University of Geneva (UniGe) - which are linked by an ongoing, multi-year “Partnership Agreement”, along with other local-to-global stakeholders. GRID-Geneva is also a bilingual English and French centre and the key francophone link within the global GRID network of centres. GRID-Geneva is a key centre of geo-spatial know-how, with strengths in GIS, IP/remote sensing and statistical analyses, integrated through modern spatial data infrastructures and web applications. Working at the interface between scientific information and policy/decision-making, GRID-Geneva also helps to develop capacities in these fields of expertise among target audiences, countries and other groups.
EartH2Observe brings together the findings from European FP projects DEWFORA, GLOWASIS, WATCH, GEOWOW and others. It will integrate available global earth observations (EO), in-situ datasets and models and will construct a global water resources re-analysis dataset of significant length (several decades). The resulting data will allow for improved insights on the full extent of available water and existing pressures on global water resources in all parts of the water cycle. The project will support efficient and globally consistent water management and decision making by providing comprehensive multi-scale (regional, continental and global) water resources observations. It will test new EO data sources, extend existing processing algorithms and combine data from multiple satellite missions in order to improve the overall resolution and reliability of EO data included in the re-analysis dataset. The resulting datasets will be made available through an open Water Cycle Integrator data portal https://wci.earth2observe.eu/ : the European contribution to the GEOSS/WCI approach. The datasets will be downscaled for application in case-studies at regional and local levels, and optimized based on identified European and local needs supporting water management and decision making . Actual data access: https://wci.earth2observe.eu/data/group/earth2observe
The EarthEnv project is a collaborative project of biodiversity scientists and remote sensing experts to develop near-global standardized, 1km resolution layers for monitoring and modeling biodiversity, ecosystems, and climate. The work is supported by NCEAS, NASA, NSF, and Yale University.
The name Earth Online derives from ESA's Earthnet programme. Earthnet prepares and attracts new ESA Earth Observation missions by setting the international cooperation scheme, preparing the basic infrastructure, building the scientific and application Community and competency in Europe to define and set-up own European Programmes in consultation with member states. Earth Online is the entry point for scientific-technical information on Earth Observation activities by the European Space Agency (ESA). The web portal provides a vast amount of content, grown and collected over more than a decade: Detailed technical information on Earth Observation (EO) missions; Satellites and sensors; EO data products & services; Online resources such as catalogues and library; Applications of satellite data; Access to promotional satellite imagery. After 10 years of operations on distinct sites, the two principal portals of ESA Earth Observation - Earth Online (earth.esa.int) and the Principal Investigator's Portal (eopi.esa.int) have moved to a new platform. ESA's technical and scientific earth observation user communities will from now on be served from a single portal, providing a modern and easy-to-use interface to our services and data.
The Gateway to Astronaut Photography of Earth hosts the best and most complete online collection of astronaut photographs of the Earth from 1961 through the present. This service is provided by the International Space Station program and the JSC Earth Science & Remote Sensing Unit, ARES Division, Exploration Integration Science Directorate.
The Geo Big Data Open Platform of the Korea Institute of Geological Resources is a data-based repository that allows anyone to easily access the latest geological resource information scattered in Korea. It was established for the purpose of quickly organizing and providing domestic and foreign geological resource research information pouring out of a super-gap society to utilize the solution of national social problems and create an open science research ecosystem in the geological resource field.
Country
The GeoPortal.rlp allows the central search and visualization of geo data. Inside the geo data infrastructure of Rhineland-Palatinate the GeoPortal.rlp inherit the central duty a service orientated branch exchange between user and offerer of geo data. The GeoPortal.rlp establishes the access to geo data over the electronic network. The GeoPortal.rlp was brought on line on January, 8th 2007 for the first time, on February, 2nd 2011 it occured a site-relaunch.
Country
The Geoscience Data Repository (GDR) is a collection of Earth Sciences Sector geoscience databases that is managed and accessed by a series of Information Services (GDRIS). This site allows you to discover, view and download information using these services. About 27 data resources are listed and many are also listed in the GeoConnections Discovery Portal.
Country
Geoscientific Data & Discovery Publishing Center (GDD) is based on the geological scientific data generated globally, establishing policies and systems for the scientific data publishing, absorbing the concepts and methods of international open data, and joint Digital Object Unique Identifier-DOI registration agencies to provide standard data reference formats and permanent access address for data references, doing publishing through the Internet platform, which combines innovation and advance. GDD mainly includes data descriptor and entity data publishing. The data papers describe entity data and corresponding metadata information. The entity data includes common shared data such as geographic information, geologic maps, and databases, and also includes multiple data types, such as documents, archive records, data forms and other multimedia formed during geological work, various data-centric applications, database interface services, and typical data services.
!!! >>> Duplicate to https://www.re3data.org/repository/r3d100011116 , this entry is no longer maintained <<< !!!! GGOS is the Global Geodetic Observing System of the International Association of Geodesy (IAG). It provides observations of the three fundamental geodetic observables and their variations, that is, the Earth's shape, the Earth's gravity field and the Earth's rotational motion. GGOS integrates different geodetic techniques, different models, different approaches in order to ensure a long-term, precise monitoring of the geodetic observables in agreement with the Integrated Global Observing Strategy (IGOS). GGOS provides the observational basis to maintain a stable, accurate and global reference frame and in this function is crucial for all Earth observation and many practical applications.
The main function of the GGSP (Galileo Geodetic Service Provider) is to provide a terrestrial reference frame, in the broadest sense of the word, to both the Galileo Core System (GCS) as well as to the Galileo User Segment (all Galileo users). This implies that the GGSP should enable all users of the Galileo System, including the most demanding ones, to access and realise the GTRF with the precision required for their specific application. Furthermore, the GGSP must ensure the proper interfaces to all users of the GTRF, especially the geodetic and scientific user groups. In addition the GGSP must ensure the adherence to the defined standards of all its products. Last but not least the GGSP will play a key role to create awareness of the GTRF and educate users in the usage and realisation of the GTRF.
Country
Global Change Research Data Publishing and Repository (GCdataPR) is an open data infrastructure on earth science, particular on the global environmental changes. The GCdataPR’ management policies following the international common understanding to the data sharing principles and guidelines is the key to make the qualified data publishing and sharing smoothly and successfully. The data management policies including dataset submission for publishing policy, peer review policy data quality control policy data long-term preservation policy, data sharing policy, 10% rule for identify original dataset policy, claim discovery with both data and paper policy, and data service statistics policy.