Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 15 result(s)
RAVE (RAdial Velocity Experiment) is a multi-fiber spectroscopic astronomical survey of stars in the Milky Way using the 1.2-m UK Schmidt Telescope of the Anglo-Australian Observatory (AAO). The RAVE collaboration consists of researchers from over 20 institutions around the world and is coordinated by the Leibniz-Institut für Astrophysik Potsdam. As a southern hemisphere survey covering 20,000 square degrees of the sky, RAVE's primary aim is to derive the radial velocity of stars from the observed spectra. Additional information is also derived such as effective temperature, surface gravity, metallicity, photometric parallax and elemental abundance data for the stars. The survey represents a giant leap forward in our understanding of our own Milky Way galaxy; with RAVE's vast stellar kinematic database the structure, formation and evolution of our Galaxy can be studied.
The HEASARC is a multi-mission astronomy archive for the EUV, X-ray, and Gamma ray wave bands. Because EUV, X and Gamma rays cannot reach the Earth's surface it is necessary to place the telescopes and sensors on spacecraft. The HEASARC now holds the data from 25 observatories covering over 30 years of X-ray, extreme-ultraviolet and gamma-ray astronomy. Data and software from many of the older missions were restored by the HEASARC staff. Examples of these archived missions include ASCA, BeppoSAX, Chandra, Compton GRO, HEAO 1, Einstein Observatory (HEAO 2), EUVE, EXOSAT, HETE-2, INTEGRAL, ROSAT, Rossi XTE, Suzaku, Swift, and XMM-Newton.
Country
AVISO stands for "Archiving, Validation and Interpretation of Satellite Oceanographic data". Here, you will find data, articles, news and tools to help you discover or improve your skills in the altimetry domain through four key themes: ocean, coast, hydrology and ice. Altimetry is a technique for measuring height. Satellite altimetry measures the time taken by a radar pulse to travel from the satellite antenna to the surface and back to the satellite receiver. Combined with precise satellite location data, altimetry measurements yield sea-surface heights.
Subject(s)
Country
Edmond is the institutional repository of the Max Planck Society for public research data. It enables Max Planck scientists to create citable scientific assets by describing, enriching, sharing, exposing, linking, publishing and archiving research data of all kinds. Further on, all objects within Edmond have a unique identifier and therefore can be clearly referenced in publications or reused in other contexts.
On February 24, 2000, Terra began collecting what will ultimately become a new, 15-year global data set on which to base scientific investigations about our complex home planet. Together with the entire fleet of EOS spacecraft, Terra is helping scientists unravel the mysteries of climate and environmental change. TERRA's data collection instruments include: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging Spectro-Radiometer (MISR), Moderate-resolution Imaging Spectroradiometer (MODIS), Measurement of Pollution in the Troposphere (MOPITT)
>>>!!!<<<The repository is offline >>>!!!<<< The Space Physics Interactive Data Resource from NOAA's National Geophysical Data Center allows solar terrestrial physics customers to intelligently access and manage historical space physics data for integration with environment models and space weather forecasts.
The Deep Carbon Observatory (DCO) is a global community of multi-disciplinary scientists unlocking the inner secrets of Earth through investigations into life, energy, and the fundamentally unique chemistry of carbon. Deep Carbon Observatory Digital Object Registry (“DCO-VIVO”) is a centrally-managed digital object identification, object registration and metadata management service for the DCO. Digital object registration includes DCO-ID generation based on the global Handle System infrastructure and metadata collection using VIVO. Users will be able to deposit their data into the DCO Data Repository and have that data discoverable and accessible by others.
When published in 2005, the Millennium Run was the largest ever simulation of the formation of structure within the ΛCDM cosmology. It uses 10(10) particles to follow the dark matter distribution in a cubic region 500h(−1)Mpc on a side, and has a spatial resolution of 5h−1kpc. Application of simplified modelling techniques to the stored output of this calculation allows the formation and evolution of the ~10(7) galaxies more luminous than the Small Magellanic Cloud to be simulated for a variety of assumptions about the detailed physics involved. As part of the activities of the German Astrophysical Virtual Observatory we have created relational databases to store the detailed assembly histories both of all the haloes and subhaloes resolved by the simulation, and of all the galaxies that form within these structures for two independent models of the galaxy formation physics. We have implemented a Structured Query Language (SQL) server on these databases. This allows easy access to many properties of the galaxies and halos, as well as to the spatial and temporal relations between them. Information is output in table format compatible with standard Virtual Observatory tools. With this announcement (from 1/8/2006) we are making these structures fully accessible to all users. Interested scientists can learn SQL and test queries on a small, openly accessible version of the Millennium Run (with volume 1/512 that of the full simulation). They can then request accounts to run similar queries on the databases for the full simulations. In 2008 and 2012 the simulations were repeated.
The NASA Exoplanet Archive collects and serves public data to support the search for and characterization of extra-solar planets (exoplanets) and their host stars. The data include published light curves, images, spectra and parameters, and time-series data from surveys that aim to discover transiting exoplanets. Tools are provided to work with the data, particularly the display and analysis of transit data sets from Kepler and CoRoT. All data are validated by the Exoplanet Archive science staff and traced to their sources. The Exoplanet Archive is the U.S. data portal for the CoRoT mission.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.
The Solar Data Analysis Center serves data from recent and current space-based solar-physics missions, funds and hosts much of the SolarSoft library, and leads the Virtual Solar Observatory (VSO) effort. SDAC is the active archive, providing network access to data from such missions as SOHO, Yohkoh, and TRACE.