Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 52 result(s)
BSRN is a project of the Radiation Panel (now the Data and Assessment Panel) from the Global Energy and Water Cycle Experiment (GEWEX) under the umbrella of the World Climate Research Programme (WCRP). It is the global baseline network for surface radiation for the Global limate Observing System (GCOS), contributing to the Global Atmospheric Watch (GAW), and forming a ooperative network with the Network for the Detection of Atmospheric Composition Change NDACC).
The Ozone Mapping and Profiler Suite measures the ozone layer in our upper atmosphere—tracking the status of global ozone distributions, including the ‘ozone hole.’ It also monitors ozone levels in the troposphere, the lowest layer of our atmosphere. OMPS extends out 40-year long record ozone layer measurements while also providing improved vertical resolution compared to previous operational instruments. Closer to the ground, OMPS’s measurements of harmful ozone improve air quality monitoring and when combined with cloud predictions; help to create the Ultraviolet Index, a guide to safe levels of sunlight exposure. OMPS has two sensors, both new designs, composed of three advanced hyperspectralimaging spectrometers.The three spectrometers: a downward-looking nadir mapper, nadir profiler and limb profiler. The entire OMPS suite currently fly on board the Suomi NPP spacecraft and are scheduled to fly on the JPSS-2 satellite mission. NASA will provide the OMPS-Limb profiler.
NED is a comprehensive database of multiwavelength data for extragalactic objects, providing a systematic, ongoing fusion of information integrated from hundreds of large sky surveys and tens of thousands of research publications. The contents and services span the entire observed spectrum from gamma rays through radio frequencies. As new observations are published, they are cross- identified or statistically associated with previous data and integrated into a unified database to simplify queries and retrieval. Seamless connectivity is also provided to data in NASA astrophysics mission archives (IRSA, HEASARC, MAST), to the astrophysics literature via ADS, and to other data centers around the world.
The EUROLAS Data Center (EDC) is one of the two data centers of the International Laser Ranging Service (ILRS). It collects, archives and distributes tracking data, predictions and other tracking relevant information from the global SLR network. Additionally EDC holds a mirror of the official Web-Pages of the ILRS at Goddard Space Flight Center (GSFC). And as result of the activities of the Analysis Working Group (AWG) of the ILRS, DGFI has been selected as analysis centers (AC) and as backup combination center (CC). This task includes weekly processing of SLR observations to LAGEOS-1/2 and ETALON-1/2 to compute station coordinates and earth orientation parameters. Additionally the combination of SLR solutions from the various analysis centres to a combinerd ILRS SLR solution.
Galaxies, made up of billions of stars like our Sun, are the beacons that light up the structure of even the most distant regions in space. Not all galaxies are alike, however. They come in very different shapes and have very different properties; they may be large or small, old or young, red or blue, regular or confused, luminous or faint, dusty or gas-poor, rotating or static, round or disky, and they live either in splendid isolation or in clusters. In other words, the universe contains a very colourful and diverse zoo of galaxies. For almost a century, astronomers have been discussing how galaxies should be classified and how they relate to each other in an attempt to attack the big question of how galaxies form. Galaxy Zoo (Lintott et al. 2008, 2011) pioneered a novel method for performing large-scale visual classifications of survey datasets. This webpage allows anyone to download the resulting GZ classifications of galaxies in the project.
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the ENVISAT satellite provided atmospheric infrared limb emission spectra. From these, profiles of temperature and atmospheric trace gases were retrieved using the research data processor developed at the Institut für Meteorologie und Klimaforschung (IMK), which is complemented by the component of non-local thermodynamic equilibrium (non-LTE) treatment from the Instituto de Astrofísica de Andalucía (IAA). The MIPAS data products on this server are commonly known as IMK/IAA MIPAS Level2 data products. The MIPAS instrument measured during two time frames: from 2002 to 2004 in full spectral resolution (high resolution = HR aka full resolution = FR), and from 2005 to 2012 in reduced spectral, but improved spatial resolution (reduced resolution = RR aka optimized resolution = OR). For this reason, there are different version numbers covering the full MIPAS mission period: xx for the HR/FR period, and 2xx for the RR/OR period (example: 61 for HR/FR, 261 for RR/OR). Beyond this, measurements were conducted in different modes covering different altitude ranges during the RR period: Nominal (6 – 70 km), MA (18 – 102 km), NLC (39 – 102 km), UA (42 – 172 km), UTLS-1 (5.5 – 19 km), UTLS-2 (12 – 42 km), AE (7 – 38 km). The non-nominal modes are identified by the following version numbers: MA = 5xx, NLC = 7xx, UA = 6xx, UTLS-1/2 = 1xx (no retrievals for AE mode).
The Infrared Space Observatory (ISO) is designed to provide detailed infrared properties of selected Galactic and extragalactic sources. The sensitivity of the telescopic system is about one thousand times superior to that of the Infrared Astronomical Satellite (IRAS), since the ISO telescope enables integration of infrared flux from a source for several hours. Density waves in the interstellar medium, its role in star formation, the giant planets, asteroids, and comets of the solar system are among the objects of investigation. ISO was operated as an observatory with the majority of its observing time being distributed to the general astronomical community. One of the consequences of this is that the data set is not homogeneous, as would be expected from a survey. The observational data underwent sophisticated data processing, including validation and accuracy analysis. In total, the ISO Data Archive contains about 30,000 standard observations, 120,000 parallel, serendipity and calibration observations and 17,000 engineering measurements. In addition to the observational data products, the archive also contains satellite data, documentation, data of historic aspects and externally derived products, for a total of more than 400 GBytes stored on magnetic disks. The ISO Data Archive is constantly being improved both in contents and functionality throughout the Active Archive Phase, ending in December 2006.
The Mikulski Archive for Space Telescopes (MAST) is a NASA funded project to support and provide to the astronomical community a variety of astronomical data archives, with the primary focus on scientifically related data sets in the optical, ultraviolet, and near-infrared parts of the spectrum. MAST is located at the Space Telescope Science Institute (STScI).
The PDS archives and distributes scientific data from NASA planetary missions, astronomical observations, and laboratory measurements. The PDS is sponsored by NASA's Science Mission Directorate. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research
Country
The Canadian Astronomy Data Centre (CADC) was established in 1986 by the National Research Council of Canada (NRC), through a grant provided by the Canadian Space Agency (CSA). Over the past 30 years the CADC has evolved from an archiving centre---hosting data from Hubble Space Telescope, Canada-France-Hawaii Telescope, the Gemini observatories, and the James Clerk Maxwell Telescope---into a Science Platform for data-intensive astronomy. The CADC, in partnership with Shared Services Canada, Compute Canada, CANARIE and the university community (funded through the Canadian Foundation for Innovation), offers cloud computing, user-managed storage, group management, and data publication services, in addition to its ongoing mission to provide permanent storage for major data collections. Located at NRC Herzberg Astronomy and Astrophysics Research Centre in Victoria, BC, the CADC staff consists of professional astronomers, software developers, and operations staff who work with the community to develop and deliver leading-edge services to advance Canadian research. The CADC plays a leading role in international efforts to improve the scientific/technical landscape that supports data intensive science. This includes leadership roles in the International Virtual Observatory Alliance and participation in organizations like the Research Data Alliance, CODATA, and the World Data Systems. CADC also contributes significantly to future Canadian projects like the Square Kilometre Array and TMT. In 2019, the Canadian Astronomy Data Centre (CADC) delivered over 2 Petabytes of data (over 200 million individual files) to thousands of astronomers in Canada and in over 80 other countries. The cloud processing system completed over 6 million jobs (over 1100 core years) in 2019.
Country
>>> --- !!!! Attention: Obviously the institute does not exist any more. The links do not work anymore. !!!! --- <<< Our center is devoted to: Collection, compilation, evaluation, and dissemination of scientific information required for fusion research, and Investigation of problems arising in the course of development of fusion research. There are atomic and molecular (A & M) numerical databases and bibliographic databases on plasma physics and atomic physics.
Country
The repository is no longer available. <<<!!!<<< 2018-08-29: no more access to GAPHYOR >>>!!!>>> Important note: The database was no longer feeded with data or updated in the years 2005-2007. The financial support of the project had been stopped a few yers ahead that time. The maintainance of the IT system couldn't be ensured anymore and system was shutdown in 2015. Please see the other databases in the field.
Country
The Data Center for Aurora in NIPR is responsible for data archiving and dissemination of all-sky camera observations, visual observations, other optical observations (such as TV and photometric observations), auroral image and particle observations from satellites, geomagnetic observations, and observations of upper atmosphere phenomena associated with aurora such as ULF, VLF and CNA activities. This Data Catalogue summarizes the collection of data sets, data books, related publications and facilities available in the WDC for Aurora as of December 2003. The WDC for Aurora changed its name as "Data Center for Aurora in NIPR" in 2008 due to the disappearance of the WDC panel in ICSU.
The University of Cape Town (UCT) uses Figshare for institutions for their data repository, which was launched in 2017 and is called ZivaHub: Open Data UCT. ZivaHub serves principal investigators at the University of Cape Town who are in need of a repository to store and openly disseminate the data that support their published research findings. The repository service is provided in terms of the UCT Research Data Management Policy. It provides open access to supplementary research data files and links to their respective scholarly publications (e.g. theses, dissertations, papers et al) hosted on other platforms, such as OpenUCT.
The UK Solar System Data Centre (UKSSDC) provides a STFC and NERC jointly funded central archive and data centre facility for Solar System science in the UK. The facilities include the World Data Centre for Solar-Terrestrial Physics, Chilton and the Cluster Ground-Based Data Centre. The UKSSDC supports data archives for the whole UK solar system community encompassing solar, inter-planetary, magnetospheric, ionospheric and geomagnetic science. The UKSSDC is part of RAL Space based at the STFC run Rutherford Appleton Laboratory in Oxfordshire.
Country
The GAVO data centre at Zentrum für Astronomie Heidelberg publishes astronomical data of all kinds – e.g., catalogues, images, spectra, time series, simulation results – in accordance with Virtual Observatory standards, making them findable and immediately usable through popular clients like TOPCAT, Aladin, or programatically through the astropy-affiliated package pyVO or the Java library STIL. We pay particular attention to providing thorough metadata to the VO Registry in order to facilitate discovery and reuse. While we have a clear focus on data produced with German contributions, we will usually publish data of other provenance, too. See https://docs.g-vo.org/DaCHS/data_checklist.html for an overview of what resource-level metadata we ask for; contact us for further information on how to publish through the German Astronomical Virtual Observatory.
Country
The National High Energy Physics Science Data Center (NHEPSDC) is a repository for high-energy physics. In 2019, it was designated as a scientific data center at the national level by the Ministry of Science and Technology of China (MOST). NHEPSDC is constructed and operated by the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS). NHEPSDC consists of a main data center in Beijing, a branch center in Guangdong-Hong Kong-Macao Greater Bay Area, and a branch center in Huairou District of Beijing. The mission of NHEPSDC is to provide the services of data collection, archiving, long-term preservation, access and sharing, software tools, and data analysis. The services of NHEPSDC are mainly for high-energy physics and related scientific research activities. The data collected can be roughly divided into the following two categories: one is the raw data from large scientific facilities, and the other is data generated from general scientific and technological projects (usually supported by government funding), hereafter referred to as generic data. More than 70 people work in NHEPSDC now, with 18 in high-energy physics, 17 in computer science, 15 in software engineering, 20 in data management and some other operation engineers. NHEPSDC is equipped with a hierarchical storage system, high-performance computing power, high bandwidth domestic and international network links, and a professional service support system. In the past three years, the average data increment is about 10 PB per year. By integrating data resources with the IT environment, a state-of-art data process platform is provided to users for scientific research, the volume of data accessed every year is more than 400 PB with more than 10 million visits.
WDC for STP, Moscow collects, stores, exchanges with other WDCs, disseminates the publications, sends upon requests data on the following Solar-Terrestrial Physics disciplines: Solar Activity and Interplanetary Medium, Cosmic Rays, Ionospheric Phenomena, Geomagnetic Variations.
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.
The Harvard Dataverse is open to all scientific data from all disciplines worldwide. It includes the world's largest collection of social science research data. It is hosting data for projects, archives, researchers, journals, organizations, and institutions.