Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 14 result(s)
HyperLeda is an information system for astronomy: It consists in a database and tools to process that data according to the user's requirements. The scientific goal which motivates the development of HyperLeda is the study of the physics and evolution of galaxies. LEDA was created more than 20 years ago, in 1983, and became HyperLeda after the merging with Hypercat in 2000
The European Space Agency's (ESA) X-ray Multi-Mirror Mission (XMM-Newton) was launched by an Ariane 504 on December 10th 1999. XMM-Newton is ESA's second cornerstone of the Horizon 2000 Science Programme. It carries 3 high throughput X-ray telescopes with an unprecedented effective area, and an optical monitor, the first flown on a X-ray observatory. The large collecting area and ability to make long uninterrupted exposures provide highly sensitive observations.
The Nuclear Data Portal is a new generation of nuclear data services using modern and powerful DELL servers, Sybase relational database software, the Linux operating system with programming in Java. The Portal includes nuclear structure, decay and reaction data, as well as literature information. Data can be searched for using optimized query forms; results are presented in tables and interactive plots. Additionally, a number of nuclear science tools, codes, applications, and links are provided. The databases includes are: CINDA - Computer Index of Nuclear Reaction Data, CSISRS alias EXFOR - Experimental nuclear reaction data, ENDF - Evaluated Nuclear Data File , ENSDF - Evaluated Nuclear Structure Data File, MIRD - Medical Internal Radiation Dose, NSR - Nuclear Science References, NuDat - Nuclear Structure & Decay Data, XUNDL - Experimental Unevaluated Nuclear Data List, Chart of Nuclides. Nuclear Data Portal is a web service of National Nuclear Data Center.
On February 24, 2000, Terra began collecting what will ultimately become a new, 15-year global data set on which to base scientific investigations about our complex home planet. Together with the entire fleet of EOS spacecraft, Terra is helping scientists unravel the mysteries of climate and environmental change. TERRA's data collection instruments include: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging Spectro-Radiometer (MISR), Moderate-resolution Imaging Spectroradiometer (MODIS), Measurement of Pollution in the Troposphere (MOPITT)
SuperDARN is an international HF radar network designed to measure global-scale magnetospheric convection by observing plasma motion in the Earth’s upper atmosphere. This network consists of more than 20 radars operating on frequencies between 8 and 20 MHz that look into the polar regions of Earth. These radars can measure the position and velocity of charged particles in our ionosphere, the highest layer of the Earth's atmosphere, and provide scientists with information regarding Earth's interaction with the space environment.
The Analytical Geomagnetic Data Center of the Trans-Regional INTERMAGNET Segment is operated by the Geophysical Center of the Russian Academy of Sciences (GC RAS). Geomagnetic data are transmitted from observatories and stations located in Russia and near-abroad countries. The Center also provides access to spaceborne data products. The MAGNUS hardware-software system underlies the operation of the Center. Its particular feature is the automated real-time recognition of artificial (anthropogenic) disturbances in incoming data. Being based on fuzzy logic approach, this quality control service facilitates the preparation of the definitive magnetograms from preliminary records carried out by data experts manually. The MAGNUS system also performs on-the-fly multi-criteria estimation of geomagnetic activity using several indicators and provides online tools for modeling electromagnetic parameters in the near-Earth space. The collected geomagnetic data are stored using relational database management system. The geomagnetic database is intended for storing both 1-minute and 1-second data. The results of anthropogenic and natural disturbance recognition are also stored in the database.
Real-Time Database for high-resolution Neutron Monitor measurements. NMDB provides access to Neutron Monitor measurements from stations around the world. The goal of NMDB is to provide easy access to all Neutron Monitor measurements through an easy to use interface. NMDB provides access to real-time as well as historical data.
AtomDB is an atomic database useful for X-ray plasma spectral modeling. The current version of AtomDB is primarly used for modeing collisional plasmas, those where hot electrons colliding with astrophysically abundant elements and ions create X-ray emission. However, AtomDB is also useful when modeling absorption by elements and ions or even photoionized plasmas, where X-ray photons (often from a simple power-law source) interacting with elements and ions create complex spectra.
The CDAWeb data system enables improved display and coordinated analysis of multi-instrument, multimission data bases of the kind whose analysis is critical to meeting the science objectives of the ISTP program and the InterAgency Consultative Group (IACG) Solar-Terrestrial Science Initiative. The system combines the client-server user interface technology of the World Wide Web with a powerful set of customized IDL routines to leverage the data format standards (CDF) and guidelines for implementation adopted by ISTP and the IACG. The system can be used with any collection of data granules following the extended set of ISTP/IACG standards. CDAWeb is being used both to support coordinated analysis of public and proprietary data and better functional access to specific public data such as the ISTP-precursor CDAW 9 data base that is formatted to the ISTP/IACG standards. Many data sets are available through the Coordinated Data Analysis Web (CDAWeb) service and the data coverage continues to grow. These are largely, but not exclusively, magnetospheric data and nearby solar wind data of the ISTP era (1992-present) at time resolutions of approximately a minute. The CDAWeb service provides graphical browsing, data subsetting, screen listings, file creations and downloads (ASCII or CDF). Public data from current (1992-present) space physics missions (including Cluster, IMAGE, ISTP, FAST, IMP-8, SAMPEX and others). Public data from missions before 1992 (including IMP-8, ISIS1/2, Alouette2, Hawkeye and others). Public data from all current and past space physics missions. CDAWeb ist part of "Space Physics Data Facility" (https://www.re3data.org/repository/r3d100010168).
Herschel has been designed to observe the `cool universe'; it is observing the structure formation in the early universe, resolving the far infrared cosmic background, revealing cosmologically evolving AGN/starburst symbiosis and galaxy evolution at the epochs when most stars in the universe were formed, unveiling the physics and chemistry of the interstellar medium and its molecular clouds, the wombs of the stars, and unravelling the mechanisms governing the formation of and evolution of stars and their planetary systems, including our own solar system, putting it into context. In short, Herschel is opening a new window to study how the universe has evolved to become the universe we see today, and how our star the sun, our planet the earth, and we ourselves fit in.
Country
Paris Astronomical Data Centre aims at providing VO access to its data collections, at participating to international standards developments, at implementing VO compliant simulation codes, data visualization and analysis software. This centre hosts high level permanent activities for tools and data distribution under the format of reference services. These sustainable services are recognized at the national level as CNRS labeled services. The various activities are organised as portals whose functions are to provide visibility and information on the projects and to encourage collaboration.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.
STARK-B is a database of calculated widths and shifts of isolated lines of atoms and ions due to electron and ion collisions. This database is devoted to modeling and spectroscopic diagnostics of stellar atmospheres and envelopes. In addition, it is also devoted to laboratory plasmas, laser equipments and technological plasmas. So, the domain of temperatures and densities covered by the tables is wide and depends on the ionization degree of the considered ion. The temperature can vary from several thousands for neutral atoms to several hundred thousands of Kelvin for highly charged ions. The electron or ion density can vary from 1012 (case of stellar atmospheres) to several 1019cm-3 (some white dwarfs and some laboratory plasmas).