Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 127 result(s)
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.
The Bremen Core Repository - BCR, for International Ocean Discovery Program (IODP), Integrated Ocean Discovery Program (IODP), Ocean Drilling Program (ODP), and Deep Sea Drilling Project (DSDP) cores from the Atlantic Ocean, Mediterranean and Black Seas and Arctic Ocean is operated at University of Bremen within the framework of the German participation in IODP. It is one of three IODP repositories (beside Gulf Coast Repository (GCR) in College Station, TX, and Kochi Core Center (KCC), Japan). One of the scientific goals of IODP is to research the deep biosphere and the subseafloor ocean. IODP has deep-frozen microbiological samples from the subseafloor available for interested researchers and will continue to collect and preserve geomicrobiology samples for future research.
IAGOS aims to provide long-term, regular and spatially resolved in situ observations of the atmospheric composition. The observation systems are deployed on a fleet of 10 to 15 commercial aircraft measuring atmospheric chemistry concentrations and meteorological fields. The IAGOS Data Centre manages and gives access to all the data produced within the project.
The Clouds and the Earth’s Radiant Energy System (CERES) is a key component of the Earth Observing System (EOS) program. CERES instruments provide radiometric measurements of the Earth’s atmosphere from three broadband channels. CERES products include both solar-reflected and Earth-emitted radiation from the top of the atmosphere to the Earth's surface.
!!! December 2015: The All-Russia Research Institute of Hydrometeorological Information – World Data Centre (RIHMI-WDC) has closed down WDC – Rockets, Satellites and Earth Rotation (WDC – RSER) since the topics are no longer its priorities. However, the WDS-SC is extremely pleased to learn that the data holdings of WDC – RSER have now become part of the collection of WDC – Meteorology, Obninsk (WDS Regular Member)!!! The World Data Centre for Rockets, Satellite and Rotation of the Earth is located in Obninsk in the All-Russian Research Institute of Hydrometeorological Information World Data Centre (RIHMI-WDC). The task of the Centre is to collect and disseminate meteorological data and products worldwide and especially in Russia. Data are available from RIHMI-WDC site
The POES satellite system offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day approximately 520 miles above the surface of the Earth. The Earth's rotation allows the satellite to see a different view with each orbit, and each satellite provides two complete views of weather around the world each day. NOAA partners with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) to constantly operate two polar-orbiting satellites – one POES and one European polar-orbiting satellite called Metop. NOAA's Polar Orbiting Environmental Satellites (POES) carry a suite of instruments that measure the flux of energetic ions and electrons at the altitude of the satellite. This environment varies as a result of solar and geomagnetic activity. Beginning with the NOAA-15 satellite, an upgraded version of the Space Environment Monitor (SEM-2) has been flown.
KDP has replaced the KNMI Data Centre (KDC), which was turned off on the 27th of July 2020. Not only a change of name, but also a transition to new technologies. Initially, the KDP will be more primitive than KDC. To fulfill future ambitions, a digital KNMI transformation has been initiated. Part of this transition is the development of a new KDP as a successor of the KDC. All data on the KNMI Data Platform is free to use. For some datasets a service agreement is available, which is indicated on the page of the dataset. The KNMI Data platform provides access to KNMI data on weather, climate and seismology. Here you will find KNMI data on various subjects such as the most recent 10-minute observations, historical series, data about meteorological measuring stations, model calculations, earthquake data and satellite products. In addition to KNMI datasets, we also make datasets from other parties available, such as ECMWF, ECOMET, EUMETSAT and WMO.
Country
Various information, such as xylarium data with wood specimens collected since 1944, atmospheric observation data using the MU radar and other instruments, space-plasma data observed with GEOTAIL satellite, are now combined as Database of Humanosphere and served for public use. Proposals for scientific and technological use are always welcome.
Content type(s)
Launched in November 1995, RADARSAT-1 provided Canada and the world with an operational radar satellite system capable of timely delivery of large amounts of data. Equipped with a powerful synthetic aperture radar (SAR) instrument, it acquired images of the Earth day or night, in all weather and through cloud cover, smoke and haze. RADARSAT-1 was a Canadian-led project involving the Canadian federal government, the Canadian provinces, the United States, and the private sector. It provided useful information to both commercial and scientific users in such fields as disaster management, interferometry, agriculture, cartography, hydrology, forestry, oceanography, ice studies and coastal monitoring. In 2007, RADARSAT-2 was launched, producing over 75,000 images per year since. In 2019, the RADARSAT Constellation Mission was deployed, using its three-satellite configuration for all-condition coverage. More information about RADARSAT-2 see https://mda.space/en/geo-intelligence/ RADARSAT-2 PORTAL see https://gsiportal.mda.space/gc_cp/#/map
Country
CCCma has developed a number of climate models. These are used to study climate change and variability, and to understand the various processes which govern the climate system. They are also used to make quantitative projections of future long-term climate change (given various greenhouse gas and aerosol forcing scenarios), and increasingly to make initialized climate predictions on time scales ranging from seasons to decades. A brief description of these models and their corresponding references can be found: https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/modeling-projections-analysis/centre-modelling-analysis/models.html
Country
This web site provides adjusted and homogenized climate data for many climatological stations in Canada. These data were created for use in climate research including climate change studies. They incorporate a number of adjustments applied to the original station data to address shifts due to changes in instruments and in observing procedures. Sometimes the observations from several stations were joined to generate a long time series. The adjusted and homogenized data are provided for four climate elements: surface air temperature, precipitation, surface pressure, and surface wind speed.
Country
The CCDS is an interface for distributing climate change information. The goals of CCDS are to: Support climate change impact and adaptation research in Canada and other countries; Support stakeholders requiring scenario information for decision making and policy development. Provide access to Canadian research on the development of scenarios and adaptation research.
CAPE began as a collection of UK local governments' Climate Action Plans, and has expanded to include a number of useful datapoints around climate, carbon emissions and local government. The Climate Action Plan Explorer collects UK Council Climate Action Plans in a single database, alongside some data on area emissions estimates within the scope of influence of councils. It allows anyone to quickly and easily find out if their council has a plan, and put those plans into context.
Country
The data page makes the data that PCIC collects and produces publicly available with an open license. The page presently provides access to BC Station Data, High-Resolution Climatology, Downscaled Climate Scenarios and VIC Hydrologic Model Output and Extreme Indices calculated from CMIP5.
Measurements Of Pollution In The Troposphere (MOPITT) was launched into sun-synchronous polar orbit on December 18, 1999, aboard TERRA, a NASA satellite orbiting 705 km above the Earth. MOPITT monitors changes in pollution patterns and the effects on Earth’s troposphere. MOPITT uses near-infrared radiation at 2.3 µm and thermal-infrared radiation at 4.7 µm to calculate atmospheric profiles of CO.
The Natural Environment Research Council's Data Repository for Atmospheric Science and Earth Observation. The Centre for Environmental Data Analysis (CEDA) serves the environmental science community through three data centres, data analysis environments, and participation in a host of relevant research projects. We aim to support environmental science, further environmental data archival practices, and develop and deploy new technologies to enhance access to data. Additionally we provide services to aid large scale data analysis.
Atmosphere to Electrons (A2e) is a new, multi-year, multi-stakeholder U.S. Department of Energy (DOE) research and development initiative tasked with improving wind plant performance and mitigating risk and uncertainty to achieve substantial reduction in the cost of wind energy production. The A2e strategic vision will enable a new generation of wind plant technology, in which smart wind plants are designed to achieve optimized performance stemming from more complete knowledge of the inflow wind resource and complex flow through the wind plant.
Country
Real time and archival databases containing Canadian water information. These data include, archived hydrometric data, water level and streamflow statistics, daily and monthly mean flow, water level and sediment concentration for monitoring station across Canada. The Water Survey of Canada (WSC) is the national authority responsible for the collection, interpretation and dissemination of standardized water resource data and information in Canada. In partnership with the provinces, territories and other agencies, WSC operates over 2800 active hydrometric gauges across the country.
Vast networks of meteorological sensors ring the globe measuring atmospheric state variables, like temperature, humidity, wind speed, rainfall, and atmospheric carbon dioxide, on a continuous basis. These measurements serve earth system science by providing inputs into models that predict weather, climate and the cycling of carbon and water. And, they provide information that allows researchers to detect the trends in climate, greenhouse gases, and air pollution. The eddy covariance method is currently the standard method used by biometeorologists to measure fluxes of trace gases between ecosystems and atmosphere.
The main goal of the ECCAD project is to provide scientific and policy users with datasets of surface emissions of atmospheric compounds, and ancillary data, i.e. data required to estimate or quantify surface emissions. The supply of ancillary data - such as maps of population density, maps of fires spots, burnt areas, land cover - could help improve and encourage the development of new emissions datasets. ECCAD offers: Access to global and regional emission inventories and ancillary data, in a standardized format Quick visualization of emission and ancillary data Rationalization of the use of input data in algorithms or emission models Analysis and comparison of emissions datasets and ancillary data Tools for the evaluation of emissions and ancillary data ECCAD is a dynamical and interactive database, providing the most up to date datasets including data used within ongoing projects. Users are welcome to add their own datasets, or have their regional masks included in order to use ECCAD tools.
Funded by the National Science Foundation (NSF) and proudly operated by Battelle, the National Ecological Observatory Network (NEON) program provides open, continental-scale data across the United States that characterize and quantify complex, rapidly changing ecological processes. The Observatory’s comprehensive design supports greater understanding of ecological change and enables forecasting of future ecological conditions. NEON collects and processes data from field sites located across the continental U.S., Puerto Rico, and Hawaii over a 30-year timeframe. NEON provides free and open data that characterize plants, animals, soil, nutrients, freshwater, and the atmosphere. These data may be combined with external datasets or data collected by individual researchers to support the study of continental-scale ecological change.