Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 49 result(s)
The EUROLAS Data Center (EDC) is one of the two data centers of the International Laser Ranging Service (ILRS). It collects, archives and distributes tracking data, predictions and other tracking relevant information from the global SLR network. Additionally EDC holds a mirror of the official Web-Pages of the ILRS at Goddard Space Flight Center (GSFC). And as result of the activities of the Analysis Working Group (AWG) of the ILRS, DGFI has been selected as analysis centers (AC) and as backup combination center (CC). This task includes weekly processing of SLR observations to LAGEOS-1/2 and ETALON-1/2 to compute station coordinates and earth orientation parameters. Additionally the combination of SLR solutions from the various analysis centres to a combinerd ILRS SLR solution.
The European Monitoring and Evaluation Programme (EMEP) is a scientifically based and policy driven programme under the Convention on Long-range Transboundary Air Pollution (CLRTAP) for international co-operation to solve transboundary air pollution problems.
NWS/NCEP/Climate Prediction Center delivers climate prediction, monitoring, and diagnostic products for timescales from weeks to years to the Nation and the global community for the protection of life and property and the enhancement of the economy. The goal of the CPC website is to provide easy and comprehensive access to data and products that serve our mission. We serve a broad audience ranging from government to non-government entities like academia, NGO’s, and the public and private sectors. Specific sectors include agriculture, energy, health, transportation, emergency managers, etc.
Climate Data Record (CDR) is a time series of measurements of sufficient length, consistency and continuity to determine climate variability and change. The fundamental CDRs include sensor data, such as calibrated radiances and brightness temperatures, that scientists have improved and quality-controlled along with the data used to calibrate them. The thematic CDRs include geophysical variables derived from the fundamental CDRs, such as sea surface temperature and sea ice concentration, and they are specific to various disciplines.
Copernicus is a European system for monitoring the Earth. Copernicus consists of a complex set of systems which collect data from multiple sources: earth observation satellites and in situ sensors such as ground stations, airborne and sea-borne sensors. It processes these data and provides users with reliable and up-to-date information through a set of services related to environmental and security issues. The services address six thematic areas: land monitoring, marine monitoring, atmosphere monitoring, climate change, emergency management and security. The main users of Copernicus services are policymakers and public authorities who need the information to develop environmental legislation and policies or to take critical decisions in the event of an emergency, such as a natural disaster or a humanitarian crisis. Based on the Copernicus services and on the data collected through the Sentinels and the contributing missions , many value-added services can be tailored to specific public or commercial needs, resulting in new business opportunities. In fact, several economic studies have already demonstrated a huge potential for job creation, innovation and growth.
The National Science Foundation (NSF) Ultraviolet (UV) Monitoring Network provides data on ozone depletion and the associated effects on terrestrial and marine systems. Data are collected from 7 sites in Antarctica, Argentina, United States, and Greenland. The network is providing data to researchers studying the effects of ozone depletion on terrestrial and marine biological systems. Network data is also used for the validation of satellite observations and for the verification of models describing the transfer of radiation through the atmosphere.
Country
HALO-DB is the web platform of a data retrieval and long-term archive system. The system was established to hold and to manage a wide range of data based on observations of the HALO research aircraft and data which are related to HALO observations. HALO (High-Altitude and LOng-range aircraft) is the new German research aircraft (German Science Community (DFG)). The aircraft, a Gulfstream GV-550 Business-Jet, is strongly modified for the application as a research platform. HALO offers several advantages for scientific campaigns, such as its high range of more than 10000 km, a high maximum altitude of more than 15 km, as well as a relatively high payload.
Country
The company RapidEye AG of Brandenburg brought on 29 August 2008 five satellites into orbit that can be aligned within a day to any point on Earth. The data are interesting for a number of large and small companies for applications from harvest planning to assessment of insurance claims case of natural disasters. Via the Rapid Eye Science Archive (RESA) science users can receive, free of charge, optical image data of the RapidEye satellite fleet. Imagery is allocated based on a proposal to be submitted via the RESA Portal which will be evaluated by independent experts.
The Data Center at the University of Wisconsin-Madison Space Science and Engineering Center (SSEC), is responsible for the access, maintenance and distribution of real-time and archive weather satellite data.
Country
AVISO stands for "Archiving, Validation and Interpretation of Satellite Oceanographic data". Here, you will find data, articles, news and tools to help you discover or improve your skills in the altimetry domain through four key themes: ocean, coast, hydrology and ice. Altimetry is a technique for measuring height. Satellite altimetry measures the time taken by a radar pulse to travel from the satellite antenna to the surface and back to the satellite receiver. Combined with precise satellite location data, altimetry measurements yield sea-surface heights.
PAGER (Prompt Assessment of Global Earthquakes for Response) is an automated system that produces content concerning the impact of significant earthquakes around the world, informing emergency responders, government and aid agencies, and the media of the scope of the potential disaster. PAGER rapidly assesses earthquake impacts by comparing the population exposed to each level of shaking intensity with models of economic and fatality losses based on past earthquakes in each country or region of the world. Earthquake alerts – which were formerly sent based only on event magnitude and location, or population exposure to shaking – now will also be generated based on the estimated range of fatalities and economic losses. PAGER uses these earthquake parameters to calculate estimates of ground shaking by using the methodology and software developed for ShakeMaps. ShakeMap sites provide near-real-time maps of ground motion and shaking intensity following significant earthquakes. These maps are used by federal, state, and local organizations, both public and private, for post-earthquake response and recovery, public and scientific information, as well as for preparedness exercises and disaster planning.
U.S. IOOS is a vital tool for tracking, predicting, managing, and adapting to changes in our ocean, coastal and Great Lakes environment. A primary focus of U.S. IOOS is integration of, and expedited access to, ocean observation data for improved decision making. The Data Management and Communication (DMAC) subsystem of U.S. IOOS serves as a central mechanism for integrating all existing and projected data sources.
SCISAT, also known as the Atmospheric Chemistry Experiment (ACE), is a Canadian Space Agency small satellite mission for remote sensing of the Earth's atmosphere using solar occultation. The satellite was launched on 12 August 2003 and continues to function perfectly. The primary mission goal is to improve our understanding of the chemical and dynamical processes that control the distribution of ozone in the stratosphere and upper troposphere, particularly in the Arctic. The high precision and accuracy of solar occultation makes SCISAT useful for monitoring changes in atmospheric composition and the validation of other satellite instruments. The satellite carries two instruments. A high resolution (0.02 cm-¹) infrared Fourier transform spectrometer (FTS) operating from 2 to 13 microns (750-4400 cm-¹) is measuring the vertical distribution of trace gases, particles and temperature. This provides vertical profiles of atmospheric constituents including essentially all of the major species associated with ozone chemistry. Aerosols and clouds are monitored using the extinction of solar radiation at 1.02 and 0.525 microns as measured by two filtered imagers. The vertical resolution of the FTS is about 3-4 km from the cloud tops up to about 150 km. Peter Bernath of the University of Waterloo is the principal investigator. A dual optical spectrograph called MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) covers the 400-1030 nm spectral region and measures primarily ozone, nitrogen dioxide and aerosol/cloud extinction. It has a vertical resolution of about 1-2 km. Tom McElroy of Environment and Climate Change Canada is the principal investigator. ACE data are freely available from the University of Waterloo website. SCISAT was designated an ESA Third Party Mission in 2005. ACE data are freely available through an ESA portal.
The TropFlux provides surface heat and momentum flux data of tropical oceans (30°N-30°S) between January 1979 and September 2011. The TropFlux data is produced under a collaboration between Laboratoire d’Océanographie: Expérimentation et Approches Numériques (LOCEAN) from Institut Pierre Simon Laplace (IPSL, Paris, France) and National Institute of Oceanography/CSIR (NIO, Goa, India), and supported by Institut de Recherche pour le Développement (IRD, France). TropFlux relies on data provided by the ECMWF Re-Analysis interim (ERA-I) and ISCCP projects. Since 2014 located at Indian National Centre for Ocean Information Services.
As one of the cornerstones of the U.S. Geological Survey's (USGS) National Geospatial Program, The National Map is a collaborative effort among the USGS and other Federal, State, and local partners to improve and deliver topographic information for the Nation. It has many uses ranging from recreation to scientific analysis to emergency response. The National Map is easily accessible for display on the Web, as products and services, and as downloadable data. The geographic information available from The National Map includes orthoimagery (aerial photographs), elevation, geographic names, hydrography, boundaries, transportation, structures, and land cover. Other types of geographic information can be added within the viewer or brought in with The National Map data into a Geographic Information System to create specific types of maps or map views.
SuperDARN is an international HF radar network designed to measure global-scale magnetospheric convection by observing plasma motion in the Earth’s upper atmosphere. This network consists of more than 20 radars operating on frequencies between 8 and 20 MHz that look into the polar regions of Earth. These radars can measure the position and velocity of charged particles in our ionosphere, the highest layer of the Earth's atmosphere, and provide scientists with information regarding Earth's interaction with the space environment.
Originally named the Radiation Belt Storm Probes (RBSP), the mission was re-named the Van Allen Probes, following successful launch and commissioning. For simplicity and continuity, the RBSP short-form has been retained for existing documentation, file naming, and data product identification purposes. The RBSPICE investigation including the RBSPICE Instrument SOC maintains compliance with requirements levied in all applicable mission control documents.
World Data Center for Oceanography serves to store and provide to users data on physical, chemical and dynamical parameters of the global ocean as well as oceanography-related papers and publications, which are either came from other countries through the international exchange or provided to the international exchange by organizations of the Russian Federation
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.
The JPL Tropical Cyclone Information System (TCIS) was developed to support hurricane research. There are three components to TCIS; a global archive of multi-satellite hurricane observations 1999-2010 (Tropical Cyclone Data Archive), North Atlantic Hurricane Watch and ASA Convective Processes Experiment (CPEX) aircraft campaign. Together, data and visualizations from the real time system and data archive can be used to study hurricane process, validate and improve models, and assist in developing new algorithms and data assimilation techniques.
Content type(s)
Launched in November 1995, RADARSAT-1 provided Canada and the world with an operational radar satellite system capable of timely delivery of large amounts of data. Equipped with a powerful synthetic aperture radar (SAR) instrument, it acquired images of the Earth day or night, in all weather and through cloud cover, smoke and haze. RADARSAT-1 was a Canadian-led project involving the Canadian federal government, the Canadian provinces, the United States, and the private sector. It provided useful information to both commercial and scientific users in such fields as disaster management, interferometry, agriculture, cartography, hydrology, forestry, oceanography, ice studies and coastal monitoring. In 2007, RADARSAT-2 was launched, producing over 75,000 images per year since. In 2019, the RADARSAT Constellation Mission was deployed, using its three-satellite configuration for all-condition coverage. More information about RADARSAT-2 see https://mda.space/en/geo-intelligence/ RADARSAT-2 PORTAL see https://gsiportal.mda.space/gc_cp/#/map
Real-Time Database for high-resolution Neutron Monitor measurements. NMDB provides access to Neutron Monitor measurements from stations around the world. The goal of NMDB is to provide easy access to all Neutron Monitor measurements through an easy to use interface. NMDB provides access to real-time as well as historical data.