Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 11 result(s)
The International Union of Basic and Clinical Pharmacology (IUPHAR) / British Pharmacological Society (BPS) Guide to PHARMACOLOGY is an expert-curated resource of ligand-activity-target relationships, the majority of which come from high-quality pharmacological and medicinal chemistry literature. It is intended as a “one-stop shop” portal to pharmacological information and its main aim is to provide a searchable database with quantitative information on drug targets and the prescription medicines and experimental drugs that act on them. In future versions we plan to add resources for education and training in pharmacological principles and techniques along with research guidelines and overviews of key topics. We hope that the IUPHAR/BPS Guide to PHARMACOLOGY (abbreviated as GtoPdb) will be useful for researchers and students in pharmacology and drug discovery and provide the general public with accurate information on the basic science underlying drug action.
The Chemical Probes Portal is an online open access catalog of annotated small molecule inhibitors, agonists and other chemical tools for biological research and preclinical drug discovery. Annotations for are extensive and distinguish between activity in cells and model organisms.
Patients-derived tumor xenograft (PDX) mouse models are an important oncology research platform to study tumor evolution, drug response and personalised medicine approaches. We have expanded to organoids and cell lines and are now called CancerModels.Org
NIAID’s TB Portals Program is a multi-national collaboration for TB data sharing and analysis to advance TB research. As a global consortium of clinicians, scientists, and IT professionals from 40 sites in 16 countries throughout eastern Europe, Asia, and sub-Saharan Africa, the TB Portals Program is a web-based, open-access repository of multi-domain TB data and tools for its analysis. Researchers can find linked socioeconomic/geographic, clinical, laboratory, radiological, and genomic data from over 7,500 international published TB patient cases with an emphasis on drug-resistant tuberculosis.
Human Protein Reference Database (HPRD) has been established by a team of biologists, bioinformaticists and software engineers. This is a joint project between the PandeyLab at Johns Hopkins University, and Institute of Bioinformatics, Bangalore. HPRD is a definitive repository of human proteins. This database should serve as a ready reckoner for researchers in their quest for drug discovery, identification of disease markers and promote biomedical research in general. Human Proteinpedia (www.humanproteinpedia.org) is its associated data portal.
The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Data and Specimen Hub (DASH) is a centralized resource that allows researchers to share and access de-identified data from studies funded by NICHD. DASH also serves as a portal for requesting biospecimens from selected DASH studies.
>>> !!!!! The Cell Centered Database is no longer on serice. It has been merged with "Cell image library": https://www.re3data.org/repository/r3d100000023 !!!!! <<<<
The central mission of the NACJD is to facilitate and encourage research in the criminal justice field by sharing data resources. Specific goals include providing computer-readable data for the quantitative study of crime and the criminal justice system through the development of a central data archive, supplying technical assistance in the selection of data collections and computer hardware and software for data analysis, and training in quantitative methods of social science research to facilitate secondary analysis of criminal justice data
The PAIN Repository is a recently funded NIH initiative, which has two components: an archive for already collected imaging data (Archived Repository), and a repository for structural and functional brain images and metadata acquired prospectively using standardized acquisition parameters (Standardized Repository) in healthy control subjects and patients with different types of chronic pain. The PAIN Repository provides the infrastructure for storage of standardized resting state functional, diffusion tensor imaging and structural brain imaging data and associated biological, physiological and behavioral metadata from multiple scanning sites, and provides tools to facilitate analysis of the resulting comprehensive data sets.
As with most biomedical databases, the first step is to identify relevant data from the research community. The Monarch Initiative is focused primarily on phenotype-related resources. We bring in data associated with those phenotypes so that our users can begin to make connections among other biological entities of interest. We import data from a variety of data sources. With many resources integrated into a single database, we can join across the various data sources to produce integrated views. We have started with the big players including ClinVar and OMIM, but are equally interested in boutique databases. You can learn more about the sources of data that populate our system from our data sources page https://monarchinitiative.org/about/sources.
The Protein Data Bank (PDB) archive is the single worldwide repository of information about the 3D structures of large biological molecules, including proteins and nucleic acids. These are the molecules of life that are found in all organisms including bacteria, yeast, plants, flies, other animals, and humans. Understanding the shape of a molecule helps to understand how it works. This knowledge can be used to help deduce a structure's role in human health and disease, and in drug development. The structures in the archive range from tiny proteins and bits of DNA to complex molecular machines like the ribosome.