Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 313 result(s)
Country
<<<!!!<<< This repository is no longer available. >>>!!!>>> C3-Grid is an ALREADY FINISHED project within D-Grid, the initiative to promote a grid-based e-Science framework in Germany. The goal of C3-Grid is to support the workflow of Earth system researchers. A grid infrastructure will be implemented that allows efficient distributed data processing and inter-institutional data exchange. Aim of the effort was to develop an infrastructure for uniform access to heterogeneous data and distributed data processing. The work was structured in two projects funded by the Federal Ministry of Education and Research. The first project was part of the D-Grid initiative and explored the potential of grid technology for climate research and developed a prototype infrastructure. Details about the C3Grid architecture are described in “Earth System Modelling – Volume 6”. In the second phase "C3Grid - INAD: Towards an Infrastructure for General Access to Climate Data" this infrastructure was improved especially with respect to interoperability to Earth System Grid Federation (ESGF). Further the portfolio of available diagnostic workflows was expanded. These workflows can be re-used now in adjacent infrastructures MiKlip Evaluation Tool (http://www.fona-miklip.de/en/index.php) and as Web Processes within the Birdhouse Framework (http://bird-house.github.io/). The Birdhouse Framework is now funded as part of the European Copernicus Climate Change Service (https://climate.copernicus.eu/) managed by ECMWF and will be extended to provide scalable processing services for ESGF hosted data at DKRZ as well as IPSL and BADC.
The Deep Blue Data repository is a means for University of Michigan researchers to make their research data openly accessible to anyone in the world, provided they meet collections criteria. Submitted data sets undergo a curation review by librarians to support discovery, understanding, and reuse of the data.
<<<!!!<<< the repository is offline >>>!!!<<< NARSTO is dedicated to improving management of air quality in North America. Additionally, NARSTO is working to improve collaboration between the air-quality and health-sciences research communities, to advance understanding of the scientific issues involved in effecting a multi-pollutant/multi-media approach to air quality management, and to increase understanding of the linkages between air quality and climate change. NARSTO is represented by private and public organizations in Canada, Mexico, and the United States. NARSTO was terminated as of December 31, 2010. While data remain available via the original NARSTO Data Archive, the permanent data archive is maintained by the NASA Langley Research Center Atmospheric Science Data Center
<<<!!!<<< The repository is no longer available. >>>!!!>>> 2021-06-17; VentDB data collections now housed in the EarthChem Library VentDB is an effort funded by the US National Science Foundation to build and operate a data management system for hydrothermal spring geochemistry that will host and serve the full range of compositional data acquired on seafloor hydrothermal vents from all tectonic settings. VentDB supports the preservation and dissemination of analytical data on hydrothermal springs and plumes. VentDB complements existing geochemical data collections such as SedDB and PetDB. VentDB can accommodate published historical data as well as legacy and new data that investigators contribute. Content of VentDB is static and will not be updated until further notice.
Country
The Marine Data Portal is a product of the “Underway”- Data initiative of the German Marine Research Alliance (Deutsche Allianz Meeresforschung - DAM) and is supported by the marine science centers AWI, GEOMAR and Hereon of the Helmholtz Association. This initiative aims to improve and standardize the systematic data collection and data evaluation for expeditions with German research vessels and marine observation. It supports scientists in their data management duties and fosters (data) science through FAIR and open access to marine research data. AWI, GEOMAR and Hereon develop this marine data hub (Marehub) to build a decentralized data infrastructure for processing, long-term archiving and dissemination of marine observation and model data and data products. The Marine Data Portal provides user-friendly, centralized access to marine research data, reports and publications from a wide range of data repositories and libraries in the context of German marine research and its international collaboration. The Marine Data Portal is developed by scientists for scientists in order to facilitate Findability and Access of marine research data for Reuse. It supports machine-readable and data driven science. Please note that the quality of the data may vary depending on the purpose for which it was originally collected.
EBAS is a database hosting observation data of atmospheric chemical composition and physical properties. EBAS hosts data submitted by data originators in support of a number of national and international programs ranging from monitoring activities to research projects. EBAS is developed and operated by the Norwegian Institute for Air Research (NILU). We hope the information found on the web-site is self explanatory, and we would particularly ask you to consider the text found in the data disclaimer and in the “info” pages associated to the filter criteria.
<<<!!!<<<This entry is depricated, the data is available at https://maxim.ucsd.edu/cbeoportal.>>>!!!>>> The Chesapeake Bay Environmental Observatory (CBEO) is a prototype to demonstrate the utility of newly developed Cyberinfrastructure (CI) components for transforming environmental research, education, and management. The CBEO project uses a specific problem of water quality (hypoxia) as means of directly involving users and demonstrating the prototype’s utility. Data from the Test Bed are being brought into a CBEO Portal on a National Geoinformatics Grid developed by the NSF funded GEON. This is a cyberinfrastructure netwrok that allows users access to datasets as well as the tools with which to analyze the data. Currently, Test Bed data avaialble on the CBEO Portal includes Water Quality Model output and water quality monitorig data from the Chesapeake Bay Program's CIMS database. This data is also available as aggregated "data cubes". Avaialble tools include the Data Access System for Hydrology (DASH), Hydroseek and an online R-based interpolator.
Country
Public access to open data from the Regional Municipality of Waterloo (the cities of Kitchener, Cambridge, and Waterloo, and the townships of Wellesley, Woolwich, Wilmot, and North Dumfries).
Country
>>> --- !!!! Attention: Obviously the institute does not exist any more. The links do not work anymore. !!!! --- <<< Our center is devoted to: Collection, compilation, evaluation, and dissemination of scientific information required for fusion research, and Investigation of problems arising in the course of development of fusion research. There are atomic and molecular (A & M) numerical databases and bibliographic databases on plasma physics and atomic physics.
The World Data Centre for Meteorology is located in Obninsk in the All-Russian Research Institute of Hydrometeorological Information World Data Centre (RIHMI-WDC). The task of the Centre is to collect and disseminate meteorological data and products worldwide and especially in Russia. The information basis of the Centre is updated on regular basis from various sources including the bilateral data exchange with the World Data Centre for Meteorology in Ashville, North Carolina, USA. The data holdings of WDC – Rockets, Satellites and Earth Rotation (WDC RSER) have become, in December 2015, part of the collection of WDC – Meteorology, Obninsk
The PeptideAtlas validates expressed proteins to provide eukaryotic genome data. Peptide Atlas provides data to advance biological discoveries in humans. The PeptideAtlas accepts proteomic data from high-throughput processes and encourages data submission.
NCEP delivers national and global weather, water, climate and space weather guidance, forecasts, warnings and analyses to its Partners and External User Communities. The National Centers for Environmental Prediction (NCEP), an arm of the NOAA's National Weather Service (NWS), is comprised of nine distinct Centers, and the Office of the Director, which provide a wide variety of national and international weather guidance products to National Weather Service field offices, government agencies, emergency managers, private sector meteorologists, and meteorological organizations and societies throughout the world. NCEP is a critical national resource in national and global weather prediction. NCEP is the starting point for nearly all weather forecasts in the United States. The Centers are: Aviation Weather Center (AWC), Climate Prediction Center (CPC), Environmental Modeling Center (EMC), NCEP Central Operations (NCO), National Hurricane Center (NHC), Ocean Prediction Center (OPC), Storm Prediction Center (SPC), Space Weather Prediction Center (SWPC), Weather Prediction Center (WPC)
PAGER (Prompt Assessment of Global Earthquakes for Response) is an automated system that produces content concerning the impact of significant earthquakes around the world, informing emergency responders, government and aid agencies, and the media of the scope of the potential disaster. PAGER rapidly assesses earthquake impacts by comparing the population exposed to each level of shaking intensity with models of economic and fatality losses based on past earthquakes in each country or region of the world. Earthquake alerts – which were formerly sent based only on event magnitude and location, or population exposure to shaking – now will also be generated based on the estimated range of fatalities and economic losses. PAGER uses these earthquake parameters to calculate estimates of ground shaking by using the methodology and software developed for ShakeMaps. ShakeMap sites provide near-real-time maps of ground motion and shaking intensity following significant earthquakes. These maps are used by federal, state, and local organizations, both public and private, for post-earthquake response and recovery, public and scientific information, as well as for preparedness exercises and disaster planning.
Strong-motion data of engineering and scientific importance from the United States and other seismically active countries are served through the Center for Engineering Strong Motion Data(CESMD). The CESMD now automatically posts strong-motion data from an increasing number of seismic stations in California within a few minutes following an earthquake as an InternetQuick Report(IQR). As appropriate,IQRs are updated by more comprehensive Internet Data Reports that include reviewed versions of the data and maps showing, for example, the finite fault rupture along with the distribution of recording stations. Automated processing of strong-motion data will be extended to post the strong-motion records of the regional seismic networks of the Advanced National Seismic System (ANSS) outside California.
GLOBE (Global Collaboration Engine) is an online collaborative environment that enables land change researchers to share, compare and integrate local and regional studies with global data to assess the global relevance of their work.
Country
Survey of India, The National Survey and Mapping Organization of the country under the Department of Science & Technology, is the OLDEST SCIENTIFIC DEPARTMENT OF THE GOVT. OF INDIA. It was set up in 1767 and has evolved rich traditions over the years. In its assigned role as the nation's Principal Mapping Agency, Survey of India bears a special responsibility to ensure that the country's domain is explored and mapped suitably, provide base maps for expeditious and integrated development and ensure that all resources contribute with their full measure to the progress, prosperity and security of our country now and for generations to come. The history of the Survey of India dates back to the 18th Century. Forerunners of army of the East India Company and Surveyors had an onerous task of exploring the unknown. Bit by bit the tapestry of Indian terrain was completed by the painstaking efforts of a distinguished line of Surveyors such as Mr. Lambton and Sir George Everest. It is a tribute to the foresight of such Surveyors that at the time of independence the country inherited a survey network built on scientific principles. The great Trigonometric series spanning the country from North to South East to West are some of the best geodetic control series available in the world. The scientific principles of surveying have since been augmented by the latest technology to meet the multidisciplinary requirement of data from planners and scientists. Organized into only 5 Directorates in 1950, mainly to look after the mapping needs of Defense Forces in North West and North East, the Department has now grown into 22 Directorates spread in approx. all parts (states) of the country to provide the basic map coverage required for the development of the country. Its technology, latest in the world, has been oriented to meet the needs of defense forces, planners and scientists in the field of geo-sciences, land and resource management. Its expert advice is being utilized by various Ministries and undertakings of Govt. of India in many sensitive areas including settlement of International borders, State boundaries and in assisting planned development of hitherto under developed areas. Faced with the requirement of digital topographical data, the department has created three Digital Centers during late eighties to generate Digital Topographical Data Base for the entire country for use in various planning processes and creation of geographic information system. Its specialized Directorates such as Geodetic and Research Branch, and Indian Institute of Surveying & Mapping (erstwhile Survey Training Institute) have been further strengthened to meet the growing requirement of user community. The department is also assisting in many scientific programs of the Nation related to the field of geo-physics, remote sensing and digital data transfers.
The WRDC, located at the Main Geophysical Observatory in St. Petersburg, Russia, processes solar radiation data currently submitted from more than 500 stations located in 56 countries and operates an archive with more than 1200 stations listed in its catalogue. The WRDC is the central depository of the measured components such as: global, diffuse and direct solar radiation, downward atmospheric radiation, net total and terrestrial surface radiation (upward), spectral radiation components (instantaneous fluxes), and sunshine duration, on hourly, daily or monthly basis.
SACA&D is developed as part of the Digitisasi Data Historis (Didah) project. This project is focusing on the digitization and use of high-resolution historical climate data from Indonesia and other Southeast Asian countries
Country
PTB is the national metrology institute of the Federal Republic of Germany. The Open Access Repository of the Physikalisch-Technische Bundesanstalt grants free access to a number of factual datasets and documents that were elaborated at PTB. This includes publications such as the "PTB-Mitteilungen", the metrological expert journal of PTB, and numerous of documents from the field of legal metrology.
Country
SDBS is an integrated spectral database system for organic compounds, which includes 6 different types of spectra under a directory of the compounds. The six spectra are as follows, an electron impact Mass spectrum (EI-MS), a Fourier transform infrared spectrum (FT-IR), a 1H nuclear magnetic resonance (NMR) spectrum, a 13C NMR spectrum, a laser Raman spectrum, and an electron spin resonance (ESR) spectrum.